Corrected spelling mistakes

This commit is contained in:
Marina Noskova 2016-02-15 14:35:36 +03:00
parent 5496dedd6a
commit ff54952769
4 changed files with 15 additions and 16 deletions

View File

@ -1535,7 +1535,7 @@ The margin type may have one of the following values: \ref SOFT_MARGIN or \ref H
- You should use \ref HARD_MARGIN type, if you have linearly separable sets. - You should use \ref HARD_MARGIN type, if you have linearly separable sets.
- You should use \ref SOFT_MARGIN type, if you have non-linearly separable sets or sets with outliers. - You should use \ref SOFT_MARGIN type, if you have non-linearly separable sets or sets with outliers.
- In the general case (if you know nothing about linearly separability of your sets), use SOFT_MARGIN. - In the general case (if you know nothing about linear separability of your sets), use SOFT_MARGIN.
The other parameters may be described as follows: The other parameters may be described as follows:
- \f$\lambda\f$ parameter is responsible for weights decreasing at each step and for the strength of restrictions on outliers - \f$\lambda\f$ parameter is responsible for weights decreasing at each step and for the strength of restrictions on outliers

View File

@ -11,7 +11,7 @@
// For Open Source Computer Vision Library // For Open Source Computer Vision Library
// //
// Copyright (C) 2000, Intel Corporation, all rights reserved. // Copyright (C) 2000, Intel Corporation, all rights reserved.
// Copyright (C) 2014, Itseez Inc, all rights reserved. // Copyright (C) 2016, Itseez Inc, all rights reserved.
// Third party copyrights are property of their respective owners. // Third party copyrights are property of their respective owners.
// //
// Redistribution and use in source and binary forms, with or without modification, // Redistribution and use in source and binary forms, with or without modification,
@ -103,7 +103,7 @@ public:
CV_IMPL_PROPERTY_S(cv::TermCriteria, TermCriteria, params.termCrit) CV_IMPL_PROPERTY_S(cv::TermCriteria, TermCriteria, params.termCrit)
private: private:
void updateWeights(InputArray sample, bool isFirstClass, float gamma, Mat &weights); void updateWeights(InputArray sample, bool isPositive, float gamma, Mat &weights);
std::pair<bool,bool> areClassesEmpty(Mat responses); std::pair<bool,bool> areClassesEmpty(Mat responses);
@ -111,7 +111,7 @@ private:
void readParams( const FileNode &fn ); void readParams( const FileNode &fn );
static inline bool isFirstClass(float val) { return val > 0; } static inline bool isPositive(float val) { return val > 0; }
static void normalizeSamples(Mat &matrix, Mat &average, float &multiplier); static void normalizeSamples(Mat &matrix, Mat &average, float &multiplier);
@ -152,7 +152,7 @@ std::pair<bool,bool> SVMSGDImpl::areClassesEmpty(Mat responses)
for(int index = 0; index < limit_index; index++) for(int index = 0; index < limit_index; index++)
{ {
if (isFirstClass(responses.at<float>(index))) if (isPositive(responses.at<float>(index)))
emptyInClasses.first = false; emptyInClasses.first = false;
else else
emptyInClasses.second = false; emptyInClasses.second = false;
@ -172,7 +172,7 @@ void SVMSGDImpl::normalizeSamples(Mat &samples, Mat &average, float &multiplier)
average = Mat(1, featuresCount, samples.type()); average = Mat(1, featuresCount, samples.type());
for (int featureIndex = 0; featureIndex < featuresCount; featureIndex++) for (int featureIndex = 0; featureIndex < featuresCount; featureIndex++)
{ {
Scalar scalAverage = mean(samples.col(featureIndex))[0]; Scalar scalAverage = mean(samples.col(featureIndex));
average.at<float>(featureIndex) = static_cast<float>(scalAverage[0]); average.at<float>(featureIndex) = static_cast<float>(scalAverage[0]);
} }
@ -190,13 +190,13 @@ void SVMSGDImpl::normalizeSamples(Mat &samples, Mat &average, float &multiplier)
void SVMSGDImpl::makeExtendedTrainSamples(const Mat &trainSamples, Mat &extendedTrainSamples, Mat &average, float &multiplier) void SVMSGDImpl::makeExtendedTrainSamples(const Mat &trainSamples, Mat &extendedTrainSamples, Mat &average, float &multiplier)
{ {
Mat normalisedTrainSamples = trainSamples.clone(); Mat normalizedTrainSamples = trainSamples.clone();
int samplesCount = normalisedTrainSamples.rows; int samplesCount = normalizedTrainSamples.rows;
normalizeSamples(normalisedTrainSamples, average, multiplier); normalizeSamples(normalizedTrainSamples, average, multiplier);
Mat onesCol = Mat::ones(samplesCount, 1, CV_32F); Mat onesCol = Mat::ones(samplesCount, 1, CV_32F);
cv::hconcat(normalisedTrainSamples, onesCol, extendedTrainSamples); cv::hconcat(normalizedTrainSamples, onesCol, extendedTrainSamples);
} }
void SVMSGDImpl::updateWeights(InputArray _sample, bool firstClass, float gamma, Mat& weights) void SVMSGDImpl::updateWeights(InputArray _sample, bool firstClass, float gamma, Mat& weights)
@ -231,7 +231,7 @@ float SVMSGDImpl::calcShift(InputArray _samples, InputArray _responses) const
Mat currentSample = trainSamples.row(samplesIndex); Mat currentSample = trainSamples.row(samplesIndex);
float dotProduct = static_cast<float>(currentSample.dot(weights_)); float dotProduct = static_cast<float>(currentSample.dot(weights_));
bool firstClass = isFirstClass(trainResponses.at<float>(samplesIndex)); bool firstClass = isPositive(trainResponses.at<float>(samplesIndex));
int index = firstClass ? 0 : 1; int index = firstClass ? 0 : 1;
float signToMul = firstClass ? 1.f : -1.f; float signToMul = firstClass ? 1.f : -1.f;
float curDistance = dotProduct * signToMul; float curDistance = dotProduct * signToMul;
@ -297,11 +297,10 @@ bool SVMSGDImpl::train(const Ptr<TrainData>& data, int)
int randomNumber = rng.uniform(0, extendedTrainSamplesCount); //generate sample number int randomNumber = rng.uniform(0, extendedTrainSamplesCount); //generate sample number
Mat currentSample = extendedTrainSamples.row(randomNumber); Mat currentSample = extendedTrainSamples.row(randomNumber);
bool firstClass = isFirstClass(trainResponses.at<float>(randomNumber));
float gamma = params.gamma0 * std::pow((1 + params.lambda * params.gamma0 * (float)iter), (-params.c)); //update gamma float gamma = params.gamma0 * std::pow((1 + params.lambda * params.gamma0 * (float)iter), (-params.c)); //update gamma
updateWeights( currentSample, firstClass, gamma, extendedWeights ); updateWeights( currentSample, isPositive(trainResponses.at<float>(randomNumber)), gamma, extendedWeights );
//average weights (only for ASGD model) //average weights (only for ASGD model)
if (params.svmsgdType == ASGD) if (params.svmsgdType == ASGD)

View File

@ -134,7 +134,7 @@ void CV_SVMSGDTrainTest::makeTestData(Mat weights, float shift)
{ {
int testSamplesCount = 100000; int testSamplesCount = 100000;
int featureCount = weights.cols; int featureCount = weights.cols;
cv::RNG rng(0); cv::RNG rng(42);
testSamples.create(testSamplesCount, featureCount, CV_32FC1); testSamples.create(testSamplesCount, featureCount, CV_32FC1);
for (int featureIndex = 0; featureIndex < featureCount; featureIndex++) for (int featureIndex = 0; featureIndex < featureCount; featureIndex++)

View File

@ -6,8 +6,6 @@
using namespace cv; using namespace cv;
using namespace cv::ml; using namespace cv::ml;
#define WIDTH 841
#define HEIGHT 594
struct Data struct Data
{ {
@ -17,6 +15,8 @@ struct Data
Data() Data()
{ {
const int WIDTH = 841;
const int HEIGHT = 594;
img = Mat::zeros(HEIGHT, WIDTH, CV_8UC3); img = Mat::zeros(HEIGHT, WIDTH, CV_8UC3);
imshow("Train svmsgd", img); imshow("Train svmsgd", img);
} }