diff --git a/samples/python2/common.py b/samples/python2/common.py index 0f332b6d0f..6b62f4304b 100644 --- a/samples/python2/common.py +++ b/samples/python2/common.py @@ -6,6 +6,12 @@ import itertools as it image_extensions = ['.bmp', '.jpg', '.jpeg', '.png', '.tif', '.tiff', '.pbm', '.pgm', '.ppm'] +class Bunch(object): + def __init__(self, **kw): + self.__dict__.update(kw) + def __str__(self): + return str(self.__dict__) + def splitfn(fn): path, fn = os.path.split(fn) name, ext = os.path.splitext(fn) diff --git a/samples/python2/feature_homography.py b/samples/python2/feature_homography.py index d553deb977..182b5698f5 100644 --- a/samples/python2/feature_homography.py +++ b/samples/python2/feature_homography.py @@ -20,7 +20,7 @@ import cv2 import video import common from collections import namedtuple -from common import getsize +from common import getsize, Bunch FLANN_INDEX_KDTREE = 1 @@ -35,11 +35,11 @@ MIN_MATCH_COUNT = 10 ar_verts = np.float32([[0, 0, 0], [0, 1, 0], [1, 1, 0], [1, 0, 0], [0, 0, 1], [0, 1, 1], [1, 1, 1], [1, 0, 1], - [0.5, 0.5, 2]]) + [0, 0.5, 2], [1, 0.5, 2]]) ar_edges = [(0, 1), (1, 2), (2, 3), (3, 0), (4, 5), (5, 6), (6, 7), (7, 4), (0, 4), (1, 5), (2, 6), (3, 7), - (4, 8), (5, 8), (6, 8), (7, 8)] + (4, 8), (5, 8), (6, 9), (7, 9), (8, 9)] @@ -53,7 +53,7 @@ class App: self.cap = video.create_capture(src) self.frame = None self.paused = False - self.ref_frame = None + self.ref_frames = [] self.detector = cv2.ORB( nfeatures = 1000 ) self.matcher = cv2.FlannBasedMatcher(flann_params, {}) # bug : need to pass empty dict (#1329) @@ -66,13 +66,19 @@ class App: if len(self.frame_desc) < MIN_MATCH_COUNT or len(self.frame_desc) < MIN_MATCH_COUNT: return - raw_matches = self.matcher.knnMatch(self.frame_desc, k = 2) - p0, p1 = [], [] - for m in raw_matches: - if len(m) == 2 and m[0].distance < m[1].distance * 0.75: - m = m[0] - p0.append( self.ref_points[m.trainIdx].pt ) # queryIdx - p1.append( self.frame_points[m.queryIdx].pt ) + matches = self.matcher.knnMatch(self.frame_desc, k = 2) + matches = [m[0] for m in matches if len(m) == 2 and m[0].distance < m[1].distance * 0.75] + if len(matches) < MIN_MATCH_COUNT: + return + img_ids = [m.imgIdx for m in matches] + match_counts = np.bincount(img_ids, minlength=len(self.ref_frames)) + bast_id = match_counts.argmax() + if match_counts[bast_id] < MIN_MATCH_COUNT: + return + ref_frame = self.ref_frames[bast_id] + matches = [m for m in matches if m.imgIdx == bast_id] + p0 = [ref_frame.points[m.trainIdx].pt for m in matches] + p1 = [self.frame_points[m.queryIdx].pt for m in matches] p0, p1 = np.float32((p0, p1)) if len(p0) < MIN_MATCH_COUNT: return @@ -82,22 +88,28 @@ class App: if status.sum() < MIN_MATCH_COUNT: return p0, p1 = p0[status], p1[status] - return p0, p1, H + return ref_frame, p0, p1, H def on_frame(self, vis): match = self.match_frames() if match is None: return + w, h = getsize(self.frame) - p0, p1, H = match - for (x0, y0), (x1, y1) in zip(np.int32(p0), np.int32(p1)): - cv2.line(vis, (x0+w, y0), (x1, y1), (0, 255, 0)) - x0, y0, x1, y1 = self.ref_rect + ref_frame, p0, p1, H = match + vis[:h,w:] = ref_frame.frame + draw_keypoints(vis[:,w:], ref_frame.points) + x0, y0, x1, y1 = ref_frame.rect + cv2.rectangle(vis, (x0+w, y0), (x1+w, y1), (0, 255, 0), 2) corners0 = np.float32([[x0, y0], [x1, y0], [x1, y1], [x0, y1]]) img_corners = cv2.perspectiveTransform(corners0.reshape(1, -1, 2), H) cv2.polylines(vis, [np.int32(img_corners)], True, (255, 255, 255), 2) + for (x0, y0), (x1, y1) in zip(np.int32(p0), np.int32(p1)): + cv2.line(vis, (x0+w, y0), (x1, y1), (0, 255, 0)) + + ''' corners3d = np.hstack([corners0, np.zeros((4, 1), np.float32)]) fx = 0.9 K = np.float64([[fx*w, 0, 0.5*(w-1)], @@ -110,21 +122,19 @@ class App: for i, j in ar_edges: (x0, y0), (x1, y1) = verts[i], verts[j] cv2.line(vis, (int(x0), int(y0)), (int(x1), int(y1)), (255, 255, 0), 2) - + ''' def on_rect(self, rect): x0, y0, x1, y1 = rect - self.ref_frame = self.frame.copy() - self.ref_rect = rect points, descs = [], [] for kp, desc in zip(self.frame_points, self.frame_desc): x, y = kp.pt if x0 <= x <= x1 and y0 <= y <= y1: points.append(kp) descs.append(desc) - self.ref_points, self.ref_descs = points, np.uint8(descs) - - self.matcher.clear() - self.matcher.add([self.ref_descs]) + descs = np.uint8(descs) + frame_data = Bunch(frame = self.frame, rect=rect, points = points, descs=descs) + self.ref_frames.append(frame_data) + self.matcher.add([descs]) def run(self): while True: @@ -141,14 +151,9 @@ class App: w, h = getsize(self.frame) vis = np.zeros((h, w*2, 3), np.uint8) vis[:h,:w] = self.frame - if self.ref_frame is not None: - vis[:h,w:] = self.ref_frame - x0, y0, x1, y1 = self.ref_rect - cv2.rectangle(vis, (x0+w, y0), (x1+w, y1), (0, 255, 0), 2) - draw_keypoints(vis[:,w:], self.ref_points) draw_keypoints(vis, self.frame_points) - if playing and self.ref_frame is not None: + if playing: self.on_frame(vis) self.rect_sel.draw(vis)