* Use FlsAlloc/FlsFree/FlsGetValue/FlsSetValue instead of TlsAlloc/TlsFree/TlsGetValue/TlsSetValue to implment TLS value cleanup when thread has been terminated on Windows Vista and above
* Fix 32-bit build
* Fixed calling convention of cleanup callback
* WINAPI changed to NTAPI
* Use proper guard macro
* Vectorize flipHoriz and flipVert functions.
* Change v_load_mirror_1 to use vec_revb for VSX
* Only use vec_revb in ISA3.0
* Removing vec_revb code since some of the older compilers don't fully support it.
* Use new v_reverse intrinsic and cleanup code.
* Ensure there are no alignment issues with copies
- move TLS & instrumentation code out of core/utility.hpp
- (*) TLSData lost .gather() method (to dispose thread data on thread termination)
- use TLSDataAccumulator for reliable collecting of thread data
- prefer using of .detachData() + .cleanupDetachedData() instead of .gather() method
(*) API is broken: replace TLSData => TLSDataAccumulator if gather required
(objects disposal on threads termination is not available in accumulator mode)
Fixing bug with comparison of v_int64x2 or v_uint64x2
* Casting v_uint64x2 to v_float64x2 and comparing does NOT work in all cases. Rewrite using epi64 instructions - faster too.
* Fix bad merge.
* Fix equal comparsion for non-SSE4.1. Add test cases for v_int64x2 comparisons.
* Try to fix merge conflict.
* Only test v_int64x2 comparisons if CV_SIMD_64F
* Fix compiler warning.
* New v_reverse HAL intrinsic for reversing the ordering of a vector
* Fix conflict.
* Try to resolve conflict again.
* Try one more time.
* Add _MM_SHUFFLE. Remove non-vectorize code in SSE2. Fix copy and paste issue with NEON.
* Change v_uint16x8 SSE2 version to use shuffles
* Cuda + OpenGL on ARM
There might be multiple ways of getting OpenCV compile on Tegra (NVIDIA Jetson) platform, but mainly they modify CUDA(8,9,10...) source code, this one fixes it for all installations.
( https://devtalk.nvidia.com/default/topic/1007290/jetson-tx2/building-opencv-with-opengl-support-/post/5141945/#5141945 et al.).
This way is exactly the same as the one proposed but the code change happens in OpenCV.
* Updated,
The link provided mentions: cuda8 + 9, I have cuda 10 + 10.1 (and can confirm it is still defined this way).
NVIDIA is probably using some other "secret" backend with Jetson.
* core: rework and optimize SIMD implementation of dotProd
- add new universal intrinsics v_dotprod[int32], v_dotprod_expand[u&int8, u&int16, int32], v_cvt_f64(int64)
- add a boolean param for all v_dotprod&_expand intrinsics that change the behavior of addition order between
pairs in some platforms in order to reach the maximum optimization when the sum among all lanes is what only matters
- fix clang build on ppc64le
- support wide universal intrinsics for dotProd_32s
- remove raw SIMD and activate universal intrinsics for dotProd_8
- implement SIMD optimization for dotProd_s16&u16
- extend performance test data types of dotprod
- fix GCC VSX workaround of vec_mule and vec_mulo (in little-endian it must be swapped)
- optimize v_mul_expand(int32) on VSX
* core: remove boolean param from v_dotprod&_expand and implement v_dotprod_fast&v_dotprod_expand_fast
this changes made depend on "terfendail" review
- renamed Cascade Lake AVX512_CEL => AVX512_CLX (align with Intel SDE tool)
- fixed CLX instruction sets (no IFMA/VBMI)
- added flag to bypass CPU baseline check: OPENCV_SKIP_CPU_BASELINE_CHECK