Commit Graph

15 Commits

Author SHA1 Message Date
Alexander Smorkalov
209802c9f6 Leaky RELU support for TFLite. 2024-09-09 12:40:35 +03:00
CNOCycle
98b8825031
Merge pull request #25613 from CNOCycle:tflite/ops
Support Global_Pool_2D ops in .tflite model #25613

### Pull Request Readiness Checklist

**Merge with extra**: https://github.com/opencv/opencv_extra/pull/1180

This PR adds support for `GlobalAveragePooling2D` and `GlobalMaxPool2D` on the TFlite backend. When the k`eep_dims` option is enabled, the output is a 2D tensor, necessitating the inclusion of an additional flatten layer. Additionally, the names of these layers have been updated to match the output tensor names generated by `generate.py` from the opencv_extra repository.

- [X] I agree to contribute to the project under Apache 2 License.
- [X] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [X] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [X] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [X] The feature is well documented and sample code can be built with the project CMake
2024-05-31 19:31:21 +03:00
CNOCycle
7713c84465
Merge pull request #25297 from CNOCycle:tflite/transpose
Support Transpose op in TFlite #25297

**Merge with extra**: https://github.com/opencv/opencv_extra/pull/1168

The purpose of this PR is to introduce support for the Transpose op in TFlite format and to add a shape comparison between the output tensors and the references. In some occasional cases, the shape of the output tensor is `[1,4,1,1]`, while the shape of the reference tensor is `[1,4]`. Consequently, the norm check incorrectly reports that the test has passed, as the residual is zero.

Below is a Python script for generating testing data. The generated data can be integrated into the repo `opencv_extra`.

```python
import numpy as np
import tensorflow as tf

PREFIX_TFL = '/path/to/opencv_extra/testdata/dnn/tflite/'

def generator(input_tensor, model, saved_name):

    # convert keras model to .tflite format
    converter = tf.lite.TFLiteConverter.from_keras_model(model)
    #converter.optimizations = [tf.lite.Optimize.DEFAULT]
    converter.optimizations = [None]
    tflite_model = converter.convert()
    with open(f'{PREFIX_TFL}/{saved_name}.tflite', 'wb') as f:
        f.write(tflite_model)

    # save the input tensor to .npy
    if input_tensor.ndim == 4:
        opencv_tensor = np.transpose(input_tensor, (0,3,1,2))
    else:
        opencv_tensor = input_tensor
    opencv_tensor = np.copy(opencv_tensor, order='C').astype(np.float32)
    np.save(f'{PREFIX_TFL}/{saved_name}_inp.npy', opencv_tensor)

    # generate output tenosr and save it to .npy
    mat_out = model(input_tensor).numpy()
    mat_out = np.copy(mat_out, order='C').astype(np.float32)
    if mat_out.ndim == 4:
        mat_out = np.transpose(mat_out, (0,3,1,2))
    interpreter = tf.lite.Interpreter(model_content=tflite_model)
    out_name = interpreter.get_output_details()[0]['name']
    np.save(f'{PREFIX_TFL}/{saved_name}_out_{out_name}.npy', mat_out)

def build_transpose():

    model_name = "keras_permute"
    mat_in = np.array([[[1,2,3], [4,5,6]]], dtype=np.float32)

    model = tf.keras.Sequential()
    model.add(tf.keras.Input(shape=(2,3)))
    model.add(tf.keras.layers.Permute((2,1)))
    model.summary()

    generator(mat_in, model, model_name)

if __name__ == '__main__':
    build_transpose()
```

### Pull Request Readiness Checklist

- [x] I agree to contribute to the project under Apache 2 License.
- [X] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [X] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [X] The feature is well documented and sample code can be built with the project CMake
2024-05-15 20:07:25 +03:00
ecchen
e63690a2d9 Add a shape checker for tflite models 2024-04-08 13:28:05 +00:00
Dmitry Kurtaev
13c95efa74
Merge pull request #25312 from dkurt:dnn_hotfix_tflite
Ownership check in TFLite importer #25312

### Pull Request Readiness Checklist

resolves https://github.com/opencv/opencv/issues/25310

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2024-04-03 09:41:40 +03:00
Dmitry Kurtaev
01dc010436
Merge pull request #25273 from dkurt:tflite_new_layers
TFLite new layers #25273

### Pull Request Readiness Checklist

resolves https://github.com/opencv/opencv/issues/25272, https://github.com/opencv/opencv/issues/24965

**Merge with extra**: https://github.com/opencv/opencv_extra/pull/1160

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2024-03-29 11:21:13 +03:00
Dmitry Kurtaev
c7ec0d599a
Merge pull request #23987 from dkurt:openvino_int8_backend
OpenVINO backend for INT8 models #23987

### Pull Request Readiness Checklist

TODO:
- [x] DetectionOutput layer (https://github.com/opencv/opencv/pull/24069)
- [x] Less FP32 fallbacks (i.e. Sigmoid, eltwise sum)
- [x] Accuracy, performance tests (https://github.com/opencv/opencv/pull/24039)
- [x] Single layer tests (convolution)
- [x] ~~Fixes for OpenVINO 2022.1 (https://pullrequest.opencv.org/buildbot/builders/precommit_custom_linux/builds/100334)~~


Performace results for object detection model `coco_efficientdet_lite0_v1_1.0_quant_2021_09_06.tflite`:
| backend | performance (median time) |
|---|---|
| OpenCV | 77.42ms |
| OpenVINO 2023.0 | 10.90ms |

CPU: `11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz`

Serialized model per-layer stats (note that Convolution should use `*_I8` primitives if they are quantized correctly): https://gist.github.com/dkurt/7772bbf1907035441bb5454f19f0feef

---

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-09-28 16:24:43 +03:00
Dmitry Kurtaev
178fdbbda8
Merge pull request #24196 from dkurt:ov_backend_cleanups
Use ngraph::Output in OpenVINO backend wrapper #24196

### Pull Request Readiness Checklist

resolves https://github.com/opencv/opencv/issues/24102

* Use `ngraph::Output<ngraph::Node>>` insead of `std::shared_ptr<ngraph::Node>` as a backend wrapper. It lets access to multi-output nodes: 588ddf1b18/modules/dnn/src/net_openvino.cpp (L501-L504)
* All layers can be customizable with OpenVINO >= 2022.1. nGraph reference code used for default layer implementation does not required CPU plugin also (might be tested by commenting CPU plugin at `/opt/intel/openvino/runtime/lib/intel64/plugins.xml`).
* Correct inference if only intermediate blobs requested.


See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-09-05 18:08:28 +03:00
Dmitry Kurtaev
a0debc3a9a Enable OpenVINO max pooling with indices since 2022.1 2023-08-23 10:39:38 +03:00
Dmitry Kurtaev
4b8aeb1129
Merge pull request #24039 from dkurt:tflite_test_backends
TFLite models on different backends (tests and improvements) #24039

### Pull Request Readiness Checklist

* MaxUnpooling with OpenVINO
* Fully connected with transposed inputs/weights with OpenVINO
* Enable backends tests for TFLite (related to https://github.com/opencv/opencv/issues/23992#issuecomment-1640691722)
* Increase existing tests thresholds

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-08-04 11:28:51 +03:00
Dmitry Kurtaev
e41ba90f17
Merge pull request #24004 from dkurt:tflite_new_layers
[TFLite] Pack layer and other fixes for SSD from Keras #24004

### Pull Request Readiness Checklist

resolves https://github.com/opencv/opencv/issues/23992

**Merge with extra**: https://github.com/opencv/opencv_extra/pull/1076

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-07-21 09:13:37 +03:00
Dmitry Kurtaev
aa57833ad5
Merge pull request #23409 from dkurt:dnn_tflite_quant
Import and inference INT8 quantized TFLite model #23409

### Pull Request Readiness Checklist

* Support quantized TFLite models
* Enable fused activations (FP32, INT8)

**Merge with extra**: https://github.com/opencv/opencv_extra/pull/1048

![res](https://user-images.githubusercontent.com/25801568/231433201-566b4bd6-ccff-462c-9e74-adbdcdf3648b.png)

on the image, green boxes are from TFLite and red boxes from OpenCV

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-04-24 13:44:10 +03:00
Dmitry Kurtaev
5df6b4a756
Merge pull request #23325 from dkurt:dnn_input_info
Propagate inputs info for ONNX and TFLite models

### Pull Request Readiness Checklist

Needed for generic applications such as benchmarking pipelines. So OpenCV can tell about the default input shapes specified in the models.

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-03-21 14:50:53 +03:00
Alexander Alekhin
bdff0949bb dnn(tflite): add 3rdparty flatbuffers with pre-generated schema 2023-02-21 16:06:19 +00:00
Dmitry Kurtaev
76350cd30f
Merge pull request #23161 from dkurt:dnn_tflite
TFLite models importer

* initial commit

* Refactor TFLiteImporter

* Better FlatBuffers detection

* Add permute before 4D->3D reshape

* Track layers layout

* TFLite Convolution2DTransposeBias layer

* Skip TFLite tests without FlatBuffers

* Fix check of FlatBuffers in tests. Add readNetFromTFLite from buffer

* TFLite Max Unpooling test

* Add skip for TFLite unpooling test

* Revert DW convolution workaround

* Fix ObjC bindings

* Better errors handling

* Regenerate TFLite schema using flatc

* dnn(tflite): more checks, better logging

* Checks for unimplemented fusion. Fix tests
2023-02-13 14:00:20 +00:00