G-API: Integration branch for ONNX & Python-related changes #23597
# Changes overview
## 1. Expose ONNX backend's Normalization and Mean-value parameters in Python
* Since Python G-API bindings rely on `Generic` infer to express Inference, the `Generic` specialization of `onnx::Params` was extended with new methods to control normalization (`/255`) and mean-value; these methods were exposed in the Python bindings
* Found some questionable parts in the existing API which I'd like to review/discuss (see comments)
UPD:
1. Thanks to @TolyaTalamanov normalization inconsistencies have been identified with `squeezenet1.0-9` ONNX model itself; tests using these model were updated to DISABLE normalization and NOT using mean/value.
2. Questionable parts were removed and tests still pass.
### Details (taken from @TolyaTalamanov's comment):
`squeezenet1.0.*onnx` - doesn't require scaling to [0,1] and mean/std because the weights of the first convolution already scaled. ONNX documentation is broken. So the correct approach to use this models is:
1. ONNX: apply preprocessing from the documentation: https://github.com/onnx/models/blob/main/vision/classification/imagenet_preprocess.py#L8-L44 but without normalization step:
```
# DON'T DO IT:
# mean_vec = np.array([0.485, 0.456, 0.406])
# stddev_vec = np.array([0.229, 0.224, 0.225])
# norm_img_data = np.zeros(img_data.shape).astype('float32')
# for i in range(img_data.shape[0]):
# norm_img_data[i,:,:] = (img_data[i,:,:]/255 - mean_vec[i]) / stddev_vec[i]
# # add batch channel
# norm_img_data = norm_img_data.reshape(1, 3, 224, 224).astype('float32')
# return norm_img_data
# INSTEAD
return img_data.reshape(1, 3, 224, 224)
```
2. G-API: Convert image from BGR to RGB and then pass to `apply` as-is with configuring parameters:
```
net = cv.gapi.onnx.params('squeezenet', model_filename)
net.cfgNormalize('data_0', False)
```
**Note**: Results might be difference because `G-API` doesn't apply central crop but just do resize to model resolution.
---
`squeezenet1.1.*onnx` - requires scaling to [0,1] and mean/std - onnx documentation is correct.
1. ONNX: apply preprocessing from the documentation: https://github.com/onnx/models/blob/main/vision/classification/imagenet_preprocess.py#L8-L44
2. G-API: Convert image from BGR to RGB and then pass to `apply` as-is with configuring parameters:
```
net = cv.gapi.onnx.params('squeezenet', model_filename)
net.cfgNormalize('data_0', True) // default
net.cfgMeanStd('data_0', [0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
```
**Note**: Results might be difference because `G-API` doesn't apply central crop but just do resize to model resolution.
## 2. Expose Fluid & kernel package-related functionality in Python
* `cv::gapi::combine()`
* `cv::GKernelPackage::size()` (mainly for testing purposes)
* `cv::gapi::imgproc::fluid::kernels()`
Added a test for the above.
## 3. Fixed issues with Python stateful kernel handling
Fixed error message when `outMeta()` of custom python operation fails.
## 4. Fixed various issues in Python tests
1. `test_gapi_streaming.py` - fixed behavior of Desync test to avoid sporadic issues
2. `test_gapi_infer_onnx.py` - fixed model lookup (it was still using the ONNX Zoo layout but was NOT using the proper env var we use to point to one).
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
G-API: Wrap GStreamerSource
* Wrap GStreamerSource into python
* Fixed test skipping when can't make Gst-src
* Wrapped GStreamerPipeline class, added dummy test for it
* Fix no_gst testing
* Changed wrap for GStreamerPipeline::getStreamingSource() : now python-specific in-class method GStreamerPipeline::get_streaming_source()
* Added accuracy tests vs OCV:VideoCapture(Gstreamer)
* Add skipping when can't use VideoCapture(GSTREAMER);
Add better handling of GStreamer backend unavailable;
Changed video to avoid terminations
* Applying comments
* back to a separate get_streaming_source function, with comment
Co-authored-by: OrestChura <orest.chura@intel.com>
[G-API] Extend compileStreaming to support different overloads
* Make different overloads
* Order python compileStreaming overloads
* Fix compileStreaming bug
* Replace
gin -> descr_of
* Set error message
* Fix review comments
* Use macros for pyopencv_to GMetaArgs
* Use GAPI_PROP_RW
* Not split Prims python stuff
G-API: Support vaargs for cv.compile_args
* Support cv.compile_args to work with variadic number of inputs
* Disable python2.x G-API
* Move compile_args to gapi pkg
[G-API] Introduce cv.gin/cv.descr_of for python
* Implement cv.gin/cv.descr_of
* Fix macos build
* Fix gcomputation tests
* Add test
* Add using to a void exceeded length for windows build
* Add using to a void exceeded length for windows build
* Fix comments to review
* Fix comments to review
* Update from latest master
* Avoid graph compilation to obtain in/out info
* Fix indentation
* Fix comments to review
* Avoid using default in switches
* Post output meta for giebackend