Fix tests writing to current work dir #24343
Several tests were writing files in the current work directory and did not clean up after test. Moved all temporary files to the `/tmp` dir and added a cleanup code.
Fixed CumSum dnn layer #24353Fixes#20110
The algorithm had several errors, so I rewrote it.
Also the layer didn't work with non constant axis tensor. Fixed it.
Enabled CumSum layer tests from ONNX conformance.
OpenVINO backend for INT8 models #23987
### Pull Request Readiness Checklist
TODO:
- [x] DetectionOutput layer (https://github.com/opencv/opencv/pull/24069)
- [x] Less FP32 fallbacks (i.e. Sigmoid, eltwise sum)
- [x] Accuracy, performance tests (https://github.com/opencv/opencv/pull/24039)
- [x] Single layer tests (convolution)
- [x] ~~Fixes for OpenVINO 2022.1 (https://pullrequest.opencv.org/buildbot/builders/precommit_custom_linux/builds/100334)~~
Performace results for object detection model `coco_efficientdet_lite0_v1_1.0_quant_2021_09_06.tflite`:
| backend | performance (median time) |
|---|---|
| OpenCV | 77.42ms |
| OpenVINO 2023.0 | 10.90ms |
CPU: `11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz`
Serialized model per-layer stats (note that Convolution should use `*_I8` primitives if they are quantized correctly): https://gist.github.com/dkurt/7772bbf1907035441bb5454f19f0feef
---
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Optimization for parallelization when large core number #24280
**Problem description:**
When the number of cores is large, OpenCV’s thread library may reduce performance when processing parallel jobs.
**The reason for this problem:**
When the number of cores (the thread pool initialized the threads, whose number is as same as the number of cores) is large, the main thread will spend too much time on waking up unnecessary threads.
When a parallel job needs to be executed, the main thread will wake up all threads in sequence, and then wait for the signal for the job completion after waking up all threads. When the number of threads is larger than the parallel number of a job slices, there will be a situation where the main thread wakes up the threads in sequence and the awakened threads have completed the job, but the main thread is still waking up the other threads. The threads woken up by the main thread after this have nothing to do, and the broadcasts made by the waking threads take a lot of time, which reduce the performance.
**Solution:**
Reduce the time for the process of main thread waking up the worker threads through the following two methods:
• The number of threads awakened by the main thread should be adjusted according to the parallel number of a job slices. If the number of threads is greater than the number of the parallel number of job slices, the total number of threads awakened should be reduced.
• In the process of waking up threads in sequence, if the main thread finds that all parallel job slices have been allocated, it will jump out of the loop in time and wait for the signal for the job completion.
**Performance Test:**
The tests were run in the manner described by https://github.com/opencv/opencv/wiki/HowToUsePerfTests.
At core number = 160, There are big performance gain in some cases.
Take the following cases in the video module as examples:
OpticalFlowPyrLK_self::Path_Idx_Cn_NPoints_WSize_Deriv::("cv/optflow/frames/VGA_%02d.png", 2, 1, (9, 9), 11, true)
Performance improves 191%:0.185405ms ->0.0636496ms
perf::DenseOpticalFlow_VariationalRefinement::(320x240, 10, 10)
Performance improves 112%:23.88938ms -> 11.2562ms
Among all the modules, the performance improvement is greatest on module video, and there are also certain improvements on other modules.
At core number = 160, the times labeled below are the geometric mean of the average time of all cases for one module. The optimization is available on each module.
overall | time(ms) | | | | | | |
-- | -- | -- | -- | -- | -- | -- | -- | --
module name | gapi | dnn | features2d | objdetect | core | imgproc | stitching | video
original | 0.185 | 1.586 | 9.998 | 11.846 | 0.205 | 0.215 | 164.409 | 0.803
optimized | 0.174 | 1.353 | 9.535 | 11.105 | 0.199 | 0.185 | 153.972 | 0.489
Performance improves | 6% | 17% | 5% | 7% | 3% | 16% | 7% | 64%
Meanwhile, It is found that adjusting the order of test cases will have an impact on some test cases. For example, we used option --gtest-shuffle to run opencv_perf_gapi, the performance of TestPerformance::CmpWithScalarPerfTestFluid/CmpWithScalarPerfTest::(compare_f, CMP_GE, 1920x1080, 32FC1, { gapi.kernel_package }) case had 30% changes compared to the case without shuffle. I would like to ask if you have also encountered such a situation and could you share your experience?
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
dnn: merge tests from test_halide_layers to test_backends #24283
Context: https://github.com/opencv/opencv/pull/24231#pullrequestreview-1628649980
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Rewrite Universal Intrinsic code: features2d and calib3d module. #24301
The goal of this series of PRs is to modify the SIMD code blocks guarded by CV_SIMD macro: rewrite them by using the new Universal Intrinsic API.
This is the modification to the features2d module and calib3d module.
Test with clang 16 and QEMU v7.0.0. `AP3P.ctheta1p_nan_23607` failed beacuse of a small calculation error. But this patch does not touch the relevant code, and this error always reproduce on QEMU, regardless of whether the patch is applied or not. I think we can ignore it
```
[ RUN ] AP3P.ctheta1p_nan_23607
/home/hanliutong/project/opencv/modules/calib3d/test/test_solvepnp_ransac.cpp:2319: Failure
Expected: (cvtest::norm(res.colRange(0, 2), expected, NORM_INF)) <= (3e-16), actual: 3.33067e-16 vs 3e-16
[ FAILED ] AP3P.ctheta1p_nan_23607 (26 ms)
...
[==========] 148 tests from 64 test cases ran. (1147114 ms total)
[ PASSED ] 147 tests.
[ FAILED ] 1 test, listed below:
[ FAILED ] AP3P.ctheta1p_nan_23607
```
Note: There are 2 test cases failed with GCC 13.2.1 without this patch, seems like there are someting wrong with RVV part on GCC.
```
[----------] Global test environment tear-down
[==========] 148 tests from 64 test cases ran. (1511399 ms total)
[ PASSED ] 146 tests.
[ FAILED ] 2 tests, listed below:
[ FAILED ] Calib3d_StereoSGBM.regression
[ FAILED ] Calib3d_StereoSGBM_HH4.regression
```
The patch is partially auto-generated by using the [rewriter](https://github.com/hanliutong/rewriter).
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [ ] I agree to contribute to the project under Apache 2 License.
- [ ] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ ] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Add Support for Einsum Layer #24037
### This PR adding support for [Einsum Layer](https://pytorch.org/docs/stable/generated/torch.einsum.html) (in progress).
This PR is currently not to be merged but only reviewed. Test cases are located in [#1090](https://github.com/opencv/opencv_extra/pull/1090)RP in OpenCV extra
**DONE**:
- [x] 2-5D GMM support added
- [x] Matrix transpose support added
- [x] Reduction type comupte 'ij->j'
- [x] 2nd shape computation - during forward
**Next PRs**:
- [ ] Broadcasting reduction "...ii ->...i"
- [ ] Add lazy shape deduction. "...ij, ...jk->...ik"
- [ ] Add implicit output computation support. "bij,bjk ->" (output subscripts should be "bik")
- [ ] Add support for CUDA backend
- [ ] BatchWiseMultiply optimize
**Later in 5.x version (requires support for 1D matrices)**:
- [ ] Add 1D vector multiplication support
- [ ] Inter product "i, i" (problems with 1D shapes)
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
* first commit
* turned C from input to constant; force C constant in impl; better handling 0d/1d cases
* integrate with gemm from ficus nn
* fix const inputs
* adjust threshold for int8 tryQuantize
* adjust threshold for int8 quantized 2
* support batched gemm and matmul; tune threshold for rcnn_ilsvrc13; update googlenet
* add gemm perf against innerproduct
* add perf tests for innerproduct with bias
* fix perf
* add memset
* renamings for next step
* add dedicated perf gemm
* add innerproduct in perf_gemm
* remove gemm and innerproduct perf tests from perf_layer
* add perf cases for vit sizes; prepack constants
* remove batched gemm; fix wrong trans; optimize KC
* remove prepacking for const A; several fixes for const B prepacking
* add todos and gemm expression
* add optimized branch for avx/avx2
* trigger build
* update macros and signature
* update signature
* fix macro
* fix bugs for neon aarch64 & x64
* add backends: cuda, cann, inf_ngraph and vkcom
* fix cuda backend
* test commit for cuda
* test cuda backend
* remove debug message from cuda backend
* use cpu dispatcher
* fix neon macro undef in dispatcher
* fix dispatcher
* fix inner kernel for neon aarch64
* fix compiling issue on armv7; try fixing accuracy issue on other platforms
* broadcast C with beta multiplied; improve func namings
* fix bug for avx and avx2
* put all platform-specific kernels in dispatcher
* fix typos
* attempt to fix compile issues on x64
* run old gemm when neon, avx, avx2 are all not available; add kernel for armv7 neon
* fix typo
* quick fix: add macros for pack4
* quick fix: use vmlaq_f32 for armv7
* quick fix for missing macro of fast gemm pack f32 4
* disable conformance tests when optimized branches are not supported
* disable perf tests when optimized branches are not supported
* decouple cv_try_neon and cv_neon_aarch64
* drop googlenet_2023; add fastGemmBatched
* fix step in fastGemmBatched
* cpu: fix initialization ofb; gpu: support batch
* quick followup fix for cuda
* add default kernels
* quick followup fix to avoid macro redef
* optmized kernels for lasx
* resolve mis-alignment; remove comments
* tune performance for x64 platform
* tune performance for neon aarch64
* tune for armv7
* comment time consuming tests
* quick follow-up fix
VIT track(gsoc realtime object tracking model) #24201
Vit tracker(vision transformer tracker) is a much better model for real-time object tracking. Vit tracker can achieve speeds exceeding nanotrack by 20% in single-threaded mode with ARM chip, and the advantage becomes even more pronounced in multi-threaded mode. In addition, on the dataset, vit tracker demonstrates better performance compared to nanotrack. Moreover, vit trackerprovides confidence values during the tracking process, which can be used to determine if the tracking is currently lost.
opencv_zoo: https://github.com/opencv/opencv_zoo/pull/194
opencv_extra: [https://github.com/opencv/opencv_extra/pull/1088](https://github.com/opencv/opencv_extra/pull/1088)
# Performance comparison is as follows:
NOTE: The speed below is tested by **onnxruntime** because opencv has poor support for the transformer architecture for now.
ONNX speed test on ARM platform(apple M2)(ms):
| thread nums | 1| 2| 3| 4|
|--------|--------|--------|--------|--------|
| nanotrack| 5.25| 4.86| 4.72| 4.49|
| vit tracker| 4.18| 2.41| 1.97| **1.46 (3X)**|
ONNX speed test on x86 platform(intel i3 10105)(ms):
| thread nums | 1| 2| 3| 4|
|--------|--------|--------|--------|--------|
| nanotrack|3.20|2.75|2.46|2.55|
| vit tracker|3.84|2.37|2.10|2.01|
opencv speed test on x86 platform(intel i3 10105)(ms):
| thread nums | 1| 2| 3| 4|
|--------|--------|--------|--------|--------|
| vit tracker|31.3|31.4|31.4|31.4|
preformance test on lasot dataset(AUC is the most important data. Higher AUC means better tracker):
|LASOT | AUC| P| Pnorm|
|--------|--------|--------|--------|
| nanotrack| 46.8| 45.0| 43.3|
| vit tracker| 48.6| 44.8| 54.7|
[https://youtu.be/MJiPnu1ZQRI](https://youtu.be/MJiPnu1ZQRI)
In target tracking tasks, the score is an important indicator that can indicate whether the current target is lost. In the video, vit tracker can track the target and display the current score in the upper left corner of the video. When the target is lost, the score drops significantly. While nanotrack will only return 0.9 score in any situation, so that we cannot determine whether the target is lost.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Rewrite Universal Intrinsic code: ImgProc (CV_SIMD_WIDTH related Part) #24166
Related PR: #24058, #24132. The goal of this series of PRs is to modify the SIMD code blocks in the opencv/modules/imgproc folder by using the new Universal Intrinsic API.
The modification of this PR mainly focuses on the code that uses the `CV_SIMD_WIDTH` macro. This macro is sometimes used for loop tail processing, such as `box_filter.simd.hpp` and `morph.simd.hpp`.
```cpp
#if CV_SIMD
int i = 0;
for (i < n - v_uint16::nlanes; i += v_uint16::nlanes) {
// some universal intrinsic code
// e.g. v_uint16...
}
#if CV_SIMD_WIDTH > 16
for (i < n - v_uint16x8::nlanes; i += v_uint16x8::nlanes) {
// handle loop tail by 128 bit SIMD
// e.g. v_uint16x8
}
#endif //CV_SIMD_WIDTH
#endif// CV_SIMD
```
The main contradiction is that the variable-length Universal Intrinsic backend cannot use 128bit fixed-length data structures. Therefore, this PR uses the scalar loop to handle the loop tail.
This PR is marked as draft because the modification of the `box_filter.simd.hpp` file caused a compilation error. The cause of the error is initially believed to be due to an internal error in the GCC compiler.
```bash
box_filter.simd.hpp:1162:5: internal compiler error: Segmentation fault
1162 | }
| ^
0xe03883 crash_signal
/wafer/share/gcc/gcc/toplev.cc:314
0x7ff261c4251f ???
./signal/../sysdeps/unix/sysv/linux/x86_64/libc_sigaction.c:0
0x6bde48 hash_set<rtl_ssa::set_info*, false, default_hash_traits<rtl_ssa::set_info*> >::iterator::operator*()
/wafer/share/gcc/gcc/hash-set.h:125
0x6bde48 extract_single_source
/wafer/share/gcc/gcc/config/riscv/riscv-vsetvl.cc:1184
0x6bde48 extract_single_source
/wafer/share/gcc/gcc/config/riscv/riscv-vsetvl.cc:1174
0x119ad9e pass_vsetvl::propagate_avl() const
/wafer/share/gcc/gcc/config/riscv/riscv-vsetvl.cc:4087
0x119ceaf pass_vsetvl::execute(function*)
/wafer/share/gcc/gcc/config/riscv/riscv-vsetvl.cc:4344
0x119ceaf pass_vsetvl::execute(function*)
/wafer/share/gcc/gcc/config/riscv/riscv-vsetvl.cc:4325
Please submit a full bug report, with preprocessed source (by using -freport-bug).
Please include the complete backtrace with any bug report.
```
This PR can be compiled with Clang 16, and `opencv_test_imgproc` is passed on QEMU.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [ ] I agree to contribute to the project under Apache 2 License.
- [ ] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ ] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Python: support tuple src for cv::add()/subtract()/... #24074
fix https://github.com/opencv/opencv/issues/24057
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ x The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Rewrite Universal Intrinsic code by using new API: ImgProc module Part 2 #24132
The goal of this series of PRs is to modify the SIMD code blocks guarded by CV_SIMD macro in the opencv/modules/imgproc folder: rewrite them by using the new Universal Intrinsic API.
This is the second part of the modification to the Imgproc module ( Part 1: #24058 ), And I tested this patch on RVV (QEMU) and AVX devices, `opencv_test_imgproc` is passed.
The patch is partially auto-generated by using the [rewriter](https://github.com/hanliutong/rewriter).
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [ ] I agree to contribute to the project under Apache 2 License.
- [ ] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ ] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
In the previous code, there was a memory leak issue where the
previously allocated memory was not freed upon a failed realloc
operation. This commit addresses the problem by releasing the old
memory before setting the pointer to NULL in case of a realloc failure.
This ensures that memory is properly managed and avoids potential
memory leaks.
Skip test on SkipTestException at fixture's constructor (version 2) #24250
### Pull Request Readiness Checklist
Another version of https://github.com/opencv/opencv/pull/24186 (reverted by https://github.com/opencv/opencv/pull/24223). Current implementation cannot handle skip exception at `static void SetUpTestCase` but works on `virtual void SetUp`.
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Rewrite Universal Intrinsic code by using new API: ImgProc module. #24058
The goal of this series of PRs is to modify the SIMD code blocks guarded by CV_SIMD macro in the `opencv/modules/imgproc` folder: rewrite them by using the new Universal Intrinsic API.
For easier review, this PR includes a part of the rewritten code, and another part will be brought in the next PR (coming soon). I tested this patch on RVV (QEMU) and AVX devices, `opencv_test_imgproc` is passed.
The patch is partially auto-generated by using the [rewriter](https://github.com/hanliutong/rewriter), related PR https://github.com/opencv/opencv/pull/23885 and https://github.com/opencv/opencv/pull/23980.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [ ] I agree to contribute to the project under Apache 2 License.
- [ ] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ ] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Fix undefined behavior arithmetic in copyMakeBorder and adjustROI. #24260
This is due to the undefined: negative int multiplied by size_t pointer increment.
To test, compile with:
```
mkdir build
cd build
cmake ../ -DCMAKE_C_FLAGS_INIT="-fsanitize=undefined" -DCMAKE_CXX_FLAGS_INIT="-fsanitize=undefined" -DCMAKE_C_COMPILER="/usr/bin/clang" -DCMAKE_CXX_COMPILER="/usr/bin/clang++" -DCMAKE_SHARED_LINKER_FLAGS="-fsanitize=undefined -lubsan"
```
And run:
```
make -j opencv_test_core && ./bin/opencv_test_core --gtest_filter=*UndefinedBehavior*
```
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Added default dimension value to tensorflow ArgMax and ArgMin layers #24266
Added default dimension value to tensorflow ArgMax and ArgMin layers.
Added exception when accessing layer's input with out of range index.
Fixes https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=48452
Modify the outputVideoFormat after changing the output format in MSMF backend #24142
After changing the output format, need to modify the outputVideoFormat, otherwise the outputVideoFormat is always CV_CAP_MODE_BGR, and an error will occur when converting the format in retrieveVideoFrame(), and will always enter "case CV_CAP_MODE_BGR:" process.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [ ] I agree to contribute to the project under Apache 2 License.
- [ ] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ ] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Co-authored-by: 李龙 <lilong@sobey.com>
Use ngraph::Output in OpenVINO backend wrapper #24196
### Pull Request Readiness Checklist
resolves https://github.com/opencv/opencv/issues/24102
* Use `ngraph::Output<ngraph::Node>>` insead of `std::shared_ptr<ngraph::Node>` as a backend wrapper. It lets access to multi-output nodes: 588ddf1b18/modules/dnn/src/net_openvino.cpp (L501-L504)
* All layers can be customizable with OpenVINO >= 2022.1. nGraph reference code used for default layer implementation does not required CPU plugin also (might be tested by commenting CPU plugin at `/opt/intel/openvino/runtime/lib/intel64/plugins.xml`).
* Correct inference if only intermediate blobs requested.
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Properly preserve chi_table license as mandated by BSD-3-Clause #24204
Amend reference to online hosted file with the full license quotation as mandated by the original license.
Fix distanceTransform for inputs with large step and height #24214
### Pull Request Readiness Checklist
resolves https://github.com/opencv/opencv/issues/23895
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Minor optimization of two lines intersection #24216
### Pull Request Readiness Checklist
Not significant, but we can reduce number of multiplications while compute two lines intersection. Both methods are used heavily in their modules.
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
The address sanitizer highlighted this issue in our code base. It
looks like the code is currently grabbing a pointer to a temporary
object and then performing operations on it.
I printed some information right before the asan crash:
eigensolver address: 0x7f0ad95032f0
eigensolver size: 4528
eig_vecs_ ptr: 0x7f0ad95045e0
eig_vecs_ offset: 4848
This shows that `eig_vecs_` points past the end of `eigensolver`. In
other words, it points at the temporary object created by the
`eigensolver.eigenvectors()` call.
Compare the docs for `.eigenvalues()`:
https://eigen.tuxfamily.org/dox/classEigen_1_1EigenSolver.html#a0f507ad7ab14797882f474ca8f2773e7
to the docs for `.eigenvectors()`:
https://eigen.tuxfamily.org/dox/classEigen_1_1EigenSolver.html#a66288022802172e3ee059283b26201d7
The difference in return types is interesting. `.eigenvalues()`
returns a reference. But `.eigenvectors()` returns a matrix.
This patch here fixes the problem by saving the temporary object and
then grabbing a pointer into it.
This is a curated snippet of the original asan failure:
==12==ERROR: AddressSanitizer: stack-use-after-scope on address 0x7fc633704640 at pc 0x7fc64f7f1593 bp 0x7ffe8875fc90 sp 0x7ffe8875fc88
READ of size 8 at 0x7fc633704640 thread T0
#0 0x7fc64f7f1592 in cv::usac::EssentialMinimalSolverStewenius5ptsImpl::estimate(std::__1::vector<int, std::__1::allocator<int> > const&, std::__1::vector<cv::Mat, std::__1::allocator<cv::Mat> >&) const /proc/self/cwd/external/com_github_opencv_opencv/modules/calib3d/src/usac/essential_solver.cpp:181:48
#1 0x7fc64f915d92 in cv::usac::EssentialEstimatorImpl::estimateModels(std::__1::vector<int, std::__1::allocator<int> > const&, std::__1::vector<cv::Mat, std::__1::allocator<cv::Mat> >&) const /proc/self/cwd/external/com_github_opencv_opencv/modules/calib3d/src/usac/estimator.cpp:110:46
#2 0x7fc64fa74fb0 in cv::usac::Ransac::run(cv::Ptr<cv::usac::RansacOutput>&) /proc/self/cwd/external/com_github_opencv_opencv/modules/calib3d/src/usac/ransac_solvers.cpp:152:58
#3 0x7fc64fa6cd8e in cv::usac::run(cv::Ptr<cv::usac::Model const> const&, cv::_InputArray const&, cv::_InputArray const&, int, cv::Ptr<cv::usac::RansacOutput>&, cv::_InputArray const&, cv::_InputArray const&, cv::_InputArray const&, cv::_InputArray const&) /proc/self/cwd/external/com_github_opencv_opencv/modules/calib3d/src/usac/ransac_solvers.cpp:1010:16
#4 0x7fc64fa6fb46 in cv::usac::findEssentialMat(cv::_InputArray const&, cv::_InputArray const&, cv::_InputArray const&, int, double, double, cv::_OutputArray const&) /proc/self/cwd/external/com_github_opencv_opencv/modules/calib3d/src/usac/ransac_solvers.cpp:527:9
#5 0x7fc64f3b5522 in cv::findEssentialMat(cv::_InputArray const&, cv::_InputArray const&, cv::_InputArray const&, int, double, double, int, cv::_OutputArray const&) /proc/self/cwd/external/com_github_opencv_opencv/modules/calib3d/src/five-point.cpp:437:16
#6 0x7fc64f3b7e00 in cv::findEssentialMat(cv::_InputArray const&, cv::_InputArray const&, cv::_InputArray const&, int, double, double, cv::_OutputArray const&) /proc/self/cwd/external/com_github_opencv_opencv/modules/calib3d/src/five-point.cpp:486:12
...
Address 0x7fc633704640 is located in stack of thread T0 at offset 17984 in frame
#0 0x7fc64f7ed4ff in cv::usac::EssentialMinimalSolverStewenius5ptsImpl::estimate(std::__1::vector<int, std::__1::allocator<int> > const&, std::__1::vector<cv::Mat, std::__1::allocator<cv::Mat> >&) const /proc/self/cwd/external/com_github_opencv_opencv/modules/calib3d/src/usac/essential_solver.cpp:36
This frame has 63 object(s):
[32, 56) 'coefficients' (line 38)
[96, 384) 'ee' (line 55)
...
[13040, 17568) 'eigensolver' (line 142)
[17824, 17840) 'ref.tmp518' (line 143)
[17856, 17872) 'ref.tmp523' (line 144)
[17888, 19488) 'ref.tmp524' (line 144) <== Memory access at offset 17984 is inside this variable
[19616, 19640) 'ref.tmp532' (line 169)
...
The crash report says that we're accessing a temporary object from
line 144 when we shouldn't be. Line 144 looks like this:
https://github.com/opencv/opencv/blob/4.6.0/modules/calib3d/src/usac/essential_solver.cpp#L144
const auto * const eig_vecs_ = (double *) eigensolver.eigenvectors().real().data();
We are using version 4.6.0 for this, but the problem is present on the
4.x branch.
Note that I am dropping the .real() call here. I think that is safe because
of the code further down (line 277 in the most recent version):
const int eig_i = 20 * i + 12; // eigen stores imaginary values too
The code appears to expect to have to skip doubles for the imaginary parts
of the complex numbers.
Admittedly, I couldn't find a test case that exercised this code path to
validate correctness.
Fix crash in ap3p #23607
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [ ] I agree to contribute to the project under Apache 2 License.
- [ ] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
G-API: Introduce a Queue Source #24178
- Added a new IStreamSource class: in fact, a wrapper over a concurrent queue;
- Added minimal example on how it can be used;
- Extended IStreamSource with optional "halt" interface to break the blocking calls in the emitter threads when required to stop.
- Introduced a QueueInput class which allows to pass the whole graph's input vector at once. In fact it is a thin wrapper atop of individual Queue Sources.
There is a hidden trap found with our type system as described in https://github.com/orgs/g-api-org/discussions/2
While it works even in this form, it should be addressed somewhere in the 5.0 timeframe.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
* add broadcast_to with tests
* change name
* fix test
* fix implicit type conversion
* replace type of shape with InputArray
* add perf test
* add perf tests which takes care of axis
* v2 from ficus expand
* rename to broadcast
* use randu in place of declare
* doc improvement; smaller scale in perf
* capture get_index by reference
If building with -mcpu=native or any other setting which implies the current
CPU has FP16 but with intrinsics disabled, we mistakenly try to use it even
though convolution.hpp conditionally defines it correctly based on whether
we should *use it*. convolution.cpp on the other hand was mismatched and
trying to use it if the CPU supported it, even if not enabled in the build
system.
Make the guards match.
Bug: https://bugs.gentoo.org/913031
Signed-off-by: Sam James <sam@gentoo.org>
Skip test on SkipTestException at fixture's constructor
* Skip test on SkipTestException at fixture's constructor
* Add warning supression
* Skip Python tests if no test file found
* Skip instances of test fixture with exception at SetUpTestCase
* Skip test with exception at SetUp method
* Try remove warning disable
* Add CV_NORETURN
* Remove FAIL assertion
* Use findDataFile to throw Skip exception
* Throw exception conditionally
* core:add OPENCV_IPP_MEAN/MINMAX/SUM option to enable IPP optimizations
* fix: to use guard HAVE_IPP and ocv_append_source_file_compile_definitions() macro.
* support OPENCV_IPP_ENABLE_ALL
* add document for OPENCV_IPP_ENABLE_ALL
* fix OPENCV_IPP_ENABLE_ALL comment
Fixed an off-by-1 buffer resize, the space for the null termination was forgotten.
Prefer snprintf, which can never overflow (if given the right size).
In one case I cheated and used strcpy, because I cannot figure out the buffer size at that point in the code.
OCL_FP16 MatMul with large batch
* Workaround FP16 MatMul with large batch
* Fix OCL reinitialization
* Higher thresholds for INT8 quantization
* Try fix gemm_buffer_NT for half (columns)
* Fix GEMM by rows
* Add batch dimension to InnerProduct layer test
* Fix Test_ONNX_conformance.Layer_Test/test_basic_conv_with_padding
* Batch 16
* Replace all vload4
* Version suffix for MobileNetSSD_deploy Caffe model
Rewrite Universal Intrinsic code by using new API: Core module. #23980
The goal of this PR is to match and modify all SIMD code blocks guarded by `CV_SIMD` macro in the `opencv/modules/core` folder and rewrite them by using the new Universal Intrinsic API.
The patch is almost auto-generated by using the [rewriter](https://github.com/hanliutong/rewriter), related PR #23885.
Most of the files have been rewritten, but I marked this PR as draft because, the `CV_SIMD` macro also exists in the following files, and the reasons why they are not rewrited are:
1. ~~code design for fixed-size SIMD (v_int16x8, v_float32x4, etc.), need to manually rewrite.~~ Rewrited
- ./modules/core/src/stat.simd.hpp
- ./modules/core/src/matrix_transform.cpp
- ./modules/core/src/matmul.simd.hpp
2. Vector types are wrapped in other class/struct, that are not supported by the compiler in variable-length backends. Can not be rewrited directly.
- ./modules/core/src/mathfuncs_core.simd.hpp
```cpp
struct v_atan_f32
{
explicit v_atan_f32(const float& scale)
{
...
}
v_float32 compute(const v_float32& y, const v_float32& x)
{
...
}
...
v_float32 val90; // sizeless type can not used in a class
v_float32 val180;
v_float32 val360;
v_float32 s;
};
```
3. The API interface does not support/does not match
- ./modules/core/src/norm.cpp
Use `v_popcount`, ~~waiting for #23966~~ Fixed
- ./modules/core/src/has_non_zero.simd.hpp
Use illegal Universal Intrinsic API: For float type, there is no logical operation `|`. Further discussion needed
```cpp
/** @brief Bitwise OR
Only for integer types. */
template<typename _Tp, int n> CV_INLINE v_reg<_Tp, n> operator|(const v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b);
template<typename _Tp, int n> CV_INLINE v_reg<_Tp, n>& operator|=(v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b);
```
```cpp
#if CV_SIMD
typedef v_float32 v_type;
const v_type v_zero = vx_setzero_f32();
constexpr const int unrollCount = 8;
int step = v_type::nlanes * unrollCount;
int len0 = len & -step;
const float* srcSimdEnd = src+len0;
int countSIMD = static_cast<int>((srcSimdEnd-src)/step);
while(!res && countSIMD--)
{
v_type v0 = vx_load(src);
src += v_type::nlanes;
v_type v1 = vx_load(src);
src += v_type::nlanes;
....
src += v_type::nlanes;
v0 |= v1; //Illegal ?
....
//res = v_check_any(((v0 | v4) != v_zero));//beware : (NaN != 0) returns "false" since != is mapped to _CMP_NEQ_OQ and not _CMP_NEQ_UQ
res = !v_check_all(((v0 | v4) == v_zero));
}
v_cleanup();
#endif
```
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [ ] I agree to contribute to the project under Apache 2 License.
- [ ] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ ] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
dnn: cleanup of tengine backend #24122🚀 Cleanup for OpenCV 5.0. Tengine backend is added for convolution layer speedup on ARM CPUs, but it is not maintained and the convolution layer on our default backend has reached similar performance to that of Tengine.
Tengine backend related PRs:
- https://github.com/opencv/opencv/pull/16724
- https://github.com/opencv/opencv/pull/18323
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Invalid memory access fix for ONNX split layer parser #24076#24101
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work https://github.com/opencv/opencv/issues/24076
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
TFLite models on different backends (tests and improvements) #24039
### Pull Request Readiness Checklist
* MaxUnpooling with OpenVINO
* Fully connected with transposed inputs/weights with OpenVINO
* Enable backends tests for TFLite (related to https://github.com/opencv/opencv/issues/23992#issuecomment-1640691722)
* Increase existing tests thresholds
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Resolve uncovered CUDA dnn layer #24080
### Pull Request Readiness Checklist
* Gelu activation layer on CUDA
* Try to relax GEMM from ONNX
resolves https://github.com/opencv/opencv/issues/24064
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Remove legacy nGraph logic #24072
### Pull Request Readiness Checklist
TODO:
- [x] Test with OpenVINO 2021.4 (tested locally)
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
DetectionOutput layer on OpenVINO without limitations #24069
### Pull Request Readiness Checklist
required for https://github.com/opencv/opencv/pull/23987
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
G-API: Support CUDA & TensoRT Execution Providers for ONNXRT Backend #24059
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [ ] I agree to contribute to the project under Apache 2 License.
- [ ] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ ] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
PReLU with element-wise scales #24056
### Pull Request Readiness Checklist
resolves https://github.com/opencv/opencv/issues/24051
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Update opencv dnn to support cann version >=6.3 #23936
1.modify the search path of "libopsproto.so" in OpenCVFindCANN.cmake
2.add the search path of "libgraph_base.so" in OpenCVFindCANN.cmake
3.automatic check Ascend socVersion,and test on Ascend310/Ascend310B/Ascend910B well
Python typing refinement for dnn_registerLayer/dnn_unregisterLayer functions #24066
This patch introduces typings generation for `dnn_registerLayer`/`dnn_unregisterLayer` manually defined in [`cv2/modules/dnn/misc/python/pyopencv_dnn.hpp`](https://github.com/opencv/opencv/blob/4.x/modules/dnn/misc/python/pyopencv_dnn.hpp)
Updates:
- Add `LayerProtocol` to `cv2/dnn/__init__.pyi`:
```python
class LayerProtocol(Protocol):
def __init__(
self, params: dict[str, DictValue],
blobs: typing.Sequence[cv2.typing.MatLike]
) -> None: ...
def getMemoryShapes(
self, inputs: typing.Sequence[typing.Sequence[int]]
) -> typing.Sequence[typing.Sequence[int]]: ...
def forward(
self, inputs: typing.Sequence[cv2.typing.MatLike]
) -> typing.Sequence[cv2.typing.MatLike]: ...
```
- Add `dnn_registerLayer` function to `cv2/__init__.pyi`:
```python
def dnn_registerLayer(layerTypeName: str,
layerClass: typing.Type[LayerProtocol]) -> None: ...
```
- Add `dnn_unregisterLayer` function to `cv2/__init__.pyi`:
```python
def dnn_unregisterLayer(layerTypeName: str) -> None: ...
```
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Fix harmless ASAN error. #24042
For an empty radius, &v[0] would be accessed (though the called functions would not use it due to v.size() being 0). Also add checks for emptyness and fix the first element checks, in case we get INT_MAX to compare to.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
G-API: Support DirectML Execution Provider for ONNXRT Backend #24045
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [ ] I agree to contribute to the project under Apache 2 License.
- [ ] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ ] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
feat: add cuda_Stream and cuda_GpuMat to simple types mapping #24029
This patch fixes usage of `cuda::Stream` in function arguments.
Affected modules: `cudacodec`:
[`using namespace cuda`](9dfe233020/modules/cudacodec/include/opencv2/cudacodec.hpp (L62)) in public `cudacodec.hpp` header can be removed after merge of the patch.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Fix FLANN python bindings #24028
As a side-effect this patch improves reporting errors by FLANN `get_param`.
resolves#21642
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
G-API: Support OpenVINO Execution Provider for ONNXRT Backend #24024
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [ ] I agree to contribute to the project under Apache 2 License.
- [ ] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ ] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
[TFLite] Pack layer and other fixes for SSD from Keras #24004
### Pull Request Readiness Checklist
resolves https://github.com/opencv/opencv/issues/23992
**Merge with extra**: https://github.com/opencv/opencv_extra/pull/1076
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Details here: https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=58006
runtime error: call to function (unknown) through pointer to incorrect function type 'void (*)(const unsigned char **, const int *, unsigned char **, const int *, int, int)'
Python typing magic constants #24023
This patch adds typing stubs generation for `__all__` and `__version__` constants.
Introduced `__all__` is intentionally empty for all generated modules stubs.
Type hints won't work for star imports
resolves#23950
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Fix python typing stubs generation for CUDA modules #24022resolves#23946resolves#23945resolvesopencv/opencv-python#871
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
C++20 made it invalid to use simple-template-ids for constructors and destructors: https://eel.is/c++draft/diff.cpp17.class#2
GCC 11 and later throw an error on this, with the unhelpful message `expected unqualified-id before ')' token`. This PR fixes the problem.
DNN: optimize the speed of general Depth-wise #23952
Try to solve the issue: https://github.com/opencv/opencv/issues/23941
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Add V4L2_PIX_FMT_Y16_BE pixel format #18498
Address #18495
relates to #23944
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or other license that is incompatible with OpenCV
- [ ] The PR is proposed to proper branch
- [x] There is reference to original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
- [ ] Test using Melexis MLX90640
Fix imgwarp at borders when transparent. #23922
I believe this is a proper fix to #23562
The PR #23754 overwrites data while that should not be the case with transparent data. The original test is failing because points at the border do not get computed because they do not have 4 neighbors to be computed. Still ,we can approximate their computation with whatever neighbors that are available.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake