UMatData locks are not mapped on real locks (they are mapped to some "pre-initialized" pool).
Concurrent execution of these statements may lead to deadlock:
- a.copyTo(b) from thread 1
- c.copyTo(d) from thread 2
where:
- 'a' and 'd' are mapped to single lock "A".
- 'b' and 'c' are mapped to single lock "B".
Workaround is to process locks with strict order.
The opencv infrastructure mostly has the basics for supporting avx512 math functions,
but it wasn't hooked up (likely due to lack of users)
In order to compile the DNN functions for AVX512, a few things need to be hooked up
and this patch does that
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
- don't store ProgramSource in compiled Programs (resolved problem with "source" buffers lifetime)
- completelly remove Program::read/write methods implementation:
- replaced with method to query RAW OpenCL binary without any "custom" data
- deprecate Program::getPrefix() methods
If there are no OpenCL/UMat methods calls from application.
OpenCL subsystem is initialized:
- haveOpenCL() is called from application
- useOpenCL() is called from application
- access to OpenCL allocator: UMat is created (empty UMat is ignored) or UMat <-> Mat conversions are called
Don't call OpenCL functions if OPENCV_OPENCL_RUNTIME=disabled
(independent from OpenCL linkage type)
* add accuracy test and performance check for matmul
* add performance tests for transform and dotProduct
* add test Core_TransformLargeTest for 8u version of transform
* remove raw SSE2/NEON implementation from matmul.cpp
* use universal intrinsic instead of raw intrinsic
* remove unused templated function
* add v_matmuladd which multiply 3x3 matrix and add 3x1 vector
* add v_rotate_left/right in universal intrinsic
* suppress intrinsic on some function and platform
* add pure SW implementation of new universal intrinsics
* add test for new universal intrinsics
* core: prevent memory access after the end of buffer
* fix perf tests