The parallel code works out how many CPUs are on the system by checking
the quota it has been assigned in the Linux cgroup. The existing code
works under cgroups v1 but the file structure changed in cgroups v2.
From [1]:
"cpu.cfs_quota_us" and "cpu.cfs_period_us" are replaced by "cpu.max"
which contains both quota and period.
This commit add support to parallel so it will read from the cgroups v2
location. v1 support is still retained.
Resolves#25284
[1] 0d5936344f
Added in-place support for cartToPolar and polarToCart #24893
- a fused hal::cartToPolar[32|64]f() is used instead of sequential hal::magnitude[32|64]f/hal::fastAtan[32|64]f
- ipp_polarToCart is skipped for in-place processing (it seems not to support it correctly)
relates to #24891
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [X] I agree to contribute to the project under Apache 2 License.
- [X] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [X] The PR is proposed to the proper branch
- [X] There is a reference to the original bug report and related work
- [X] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
C-API cleanup: apps, imgproc_c and some constants #25075
Merge with https://github.com/opencv/opencv_contrib/pull/3642
* Removed obsolete apps - traincascade and createsamples (please use older OpenCV versions if you need them). These apps relied heavily on C-API
* removed all mentions of imgproc C-API headers (imgproc_c.h, types_c.h) - they were empty, included core C-API headers
* replaced usage of several C constants with C++ ones (error codes, norm modes, RNG modes, PCA modes, ...) - most part of this PR (split into two parts - all modules and calib+3d - for easier backporting)
* removed imgproc C-API headers (as separate commit, so that other changes could be backported to 4.x)
Most of these changes can be backported to 4.x.
Replace legacy __ARM_NEON__ by __ARM_NEON #25024
Even ACLE 1.1 referes to __ARM_NEON
https://developer.arm.com/documentation/ihi0053/b/?lang=en
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
* started adding support for new types (16f, 16bf, 32u, 64u, 64s) to arithmetic functions
* fixed several tests; refactored and extended sum(), extended inRange().
* extended countNonZero(), mean(), meanStdDev(), minMaxIdx(), norm() and sum() to support new types (F16, BF16, U32, U64, S64)
* put missing CV_DEPTH_MAX to some function dispatcher tables
* extended findnonzero, hasnonzero with the new types support
* extended mixChannels() to support new types
* minor fix
* fixed a few compile errors on Linux and a few failures in core tests
* fixed a few more warnings and test failures
* trying to fix the remaining warnings and test failures. The test `MulTestGPU.MathOpTest` was disabled - not clear whether to set tolerance - it's not bit-exact operation, as possibly assumed by the test, due to the use of scale and possibly limited accuracy of the intermediate floating-point calculations.
* found that in the current snapshot G-API produces incorrect results in Mul, Div and AddWeighted (at least when using OpenCL on Windows x64 or MacOS x64). Disabled the respective tests.
core(OpenCL): optimize convertTo() with CV_16F (convertFp16() replacement) #24918
relates #24909
relates #24917
relates #24892
Performance changes:
- [x] 12700K (1 thread) + Intel iGPU
|Name of Test|noOCL|convertFp16|convertTo BASE|convertTo PATCH|
|---|:-:|:-:|:-:|:-:|
|ConvertFP16FP32MatMat::OCL_Core|3.130|3.152|3.127|3.136|
|ConvertFP16FP32MatUMat::OCL_Core|3.030|3.996|3.007|2.671|
|ConvertFP16FP32UMatMat::OCL_Core|3.010|3.101|3.056|2.854|
|ConvertFP16FP32UMatUMat::OCL_Core|3.016|3.298|2.072|2.061|
|ConvertFP32FP16MatMat::OCL_Core|2.697|2.652|2.723|2.721|
|ConvertFP32FP16MatUMat::OCL_Core|2.752|4.268|2.662|2.947|
|ConvertFP32FP16UMatMat::OCL_Core|2.706|2.601|2.603|2.528|
|ConvertFP32FP16UMatUMat::OCL_Core|2.704|3.215|1.999|1.988|
Patched version is not worse than convertFp16 and convertTo baseline (except MatUMat 32->16, baseline uses CPU code+dst buffer map).
There are still gaps against noOpenCL(CPU only) mode due to T-API implementation issues (unnecessary synchronization).
- [x] 12700K + AMD dGPU
|Name of Test|noOCL|convertFp16 dGPU|convertTo BASE dGPU|convertTo PATCH dGPU|
|---|:-:|:-:|:-:|:-:|
|ConvertFP16FP32MatMat::OCL_Core|3.130|3.133|3.172|3.087|
|ConvertFP16FP32MatUMat::OCL_Core|3.030|1.713|9.559|1.729|
|ConvertFP16FP32UMatMat::OCL_Core|3.010|6.515|6.309|4.452|
|ConvertFP16FP32UMatUMat::OCL_Core|3.016|0.242|23.597|0.170|
|ConvertFP32FP16MatMat::OCL_Core|2.697|2.641|2.713|2.689|
|ConvertFP32FP16MatUMat::OCL_Core|2.752|4.076|6.483|4.191|
|ConvertFP32FP16UMatMat::OCL_Core|2.706|9.042|16.481|1.834|
|ConvertFP32FP16UMatUMat::OCL_Core|2.704|0.229|15.730|0.176|
convertTo-baseline can't compile OpenCL kernel for FP16 properly - FIXED.
dGPU has much more power, so results are x16-17 better than single cpu core.
Patched version is not worse than convertFp16 and convertTo baseline.
There are still gaps against noOpenCL(CPU only) mode due to T-API implementation issues (unnecessary synchronization) and required memory transfers.
Co-authored-by: Alexander Alekhin <alexander.a.alekhin@gmail.com>
Removed all pre-C++11 code, workarounds, and branches #23736
This removes a bunch of pre-C++11 workrarounds that are no longer necessary as C++11 is now required.
It is a nice clean up and simplification.
* No longer unconditionally #include <array> in cvdef.h, include explicitly where needed
* Removed deprecated CV_NODISCARD, already unused in the codebase
* Removed some pre-C++11 workarounds, and simplified some backwards compat defines
* Removed CV_CXX_STD_ARRAY
* Removed CV_CXX_MOVE_SEMANTICS and CV_CXX_MOVE
* Removed all tests of CV_CXX11, now assume it's always true. This allowed removing a lot of dead code.
* Updated some documentation consequently.
* Removed all tests of CV_CXX11, now assume it's always true
* Fixed links.
---------
Co-authored-by: Maksim Shabunin <maksim.shabunin@gmail.com>
Co-authored-by: Alexander Smorkalov <alexander.smorkalov@xperience.ai>
FreeBSD does not have the /proc file system. FreeBSD was added to the code path
for aarch64 before the use of the /proc file system with f7b4b750d8
but then /proc usage was added not long after with b3269b08a1
I do not have more info on the platform as it is internal.
Without this fix, the error is:
core/src/arithm.simd.hpp:868:1: error: too few arguments provided to function-like macro invocation
868 | DEFINE_SIMD_ALL(cmp)
| ^
./third_party/OpenCV/public/modules/./core/src/arithm.simd.hpp:93:5: note: expanded from macro 'DEFINE_SIMD_ALL'
93 | DEFINE_SIMD_NSAT(fun, __VA_ARGS__)
| ^
./third_party/OpenCV/public/modules/./core/src/arithm.simd.hpp:89:5: note: expanded from macro 'DEFINE_SIMD_NSAT'
89 | DEFINE_SIMD_F64(fun, __VA_ARGS__)
| ^
./third_party/OpenCV/public/modules/./core/src/arithm.simd.hpp:77:9: note: expanded from macro 'DEFINE_SIMD_F64'
77 | DEFINE_NOSIMD(__CV_CAT(fun, 64f), double, __VA_ARGS__)
| ^
./third_party/OpenCV/public/modules/./core/src/arithm.simd.hpp:47:56: note: expanded from macro 'DEFINE_NOSIMD'
47 | DEFINE_NOSIMD_FUN(fun_name, c_type, __VA_ARGS__)
| ^
./third_party/OpenCV/public/modules/./core/src/arithm.simd.hpp:860:9: note: macro 'DEFINE_NOSIMD_FUN' defined here
860 | #define DEFINE_NOSIMD_FUN(fun, _T1, _Tvec, ...) \
Fix verify unsupported new mat depth for nonzero/minmax/lut #24578
`cv::LUI()`, `cv::minMaxLoc()`, `cv::minMaxIdx()`, `cv::countNonZero()`, `cv::findNonZero()` and `cv::hasNonZero()` uses depth-based function table. However, it is too short for `CV_16BF`, `CV_Bool`, `CV_64U`, `CV_64S` and `CV_32U` and it may occur out-boundary-access. This patch fix it. And If necessary, when someone extends these functions to support, please relax this test.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
This patch change lsx to baseline feature, and lasx to dispatch
feature. Additionally, the runtime detection methods for lasx and
lsx have been modified.
finiteMask() and doubles for patchNaNs() #23098
Related to #22826
Connected PR in extra: [#1037@extra](https://github.com/opencv/opencv_extra/pull/1037)
### TODOs:
- [ ] Vectorize `finiteMask()` for 64FC3 and 64FC4
### Changes
This PR:
* adds a new function `finiteMask()`
* extends `patchNaNs()` by CV_64F support
* moves `patchNaNs()` and `finiteMask()` to a separate file
**NOTE:** now the function is called `finiteMask()` as discussed with the OpenCV core team
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Backport to 4.x: patchNaNs() SIMD acceleration #24480
backport from #23098
connected PR in extra: [#1118@extra](https://github.com/opencv/opencv_extra/pull/1118)
### This PR contains:
* new SIMD code for `patchNaNs()`
* CPU perf test
<details>
<summary>Performance comparison</summary>
Geometric mean (ms)
|Name of Test|noopt|sse2|avx2|sse2 vs noopt (x-factor)|avx2 vs noopt (x-factor)|
|---|:-:|:-:|:-:|:-:|:-:|
|PatchNaNs::OCL_PatchNaNsFixture::(640x480, 32FC1)|0.019|0.017|0.018|1.11|1.07|
|PatchNaNs::OCL_PatchNaNsFixture::(640x480, 32FC4)|0.037|0.037|0.033|1.00|1.10|
|PatchNaNs::OCL_PatchNaNsFixture::(1280x720, 32FC1)|0.032|0.032|0.033|0.99|0.98|
|PatchNaNs::OCL_PatchNaNsFixture::(1280x720, 32FC4)|0.072|0.072|0.070|1.00|1.03|
|PatchNaNs::OCL_PatchNaNsFixture::(1920x1080, 32FC1)|0.051|0.051|0.050|1.00|1.01|
|PatchNaNs::OCL_PatchNaNsFixture::(1920x1080, 32FC4)|0.137|0.138|0.128|0.99|1.06|
|PatchNaNs::OCL_PatchNaNsFixture::(3840x2160, 32FC1)|0.137|0.128|0.129|1.07|1.06|
|PatchNaNs::OCL_PatchNaNsFixture::(3840x2160, 32FC4)|0.450|0.450|0.448|1.00|1.01|
|PatchNaNs::PatchNaNsFixture::(640x480, 32FC1)|0.149|0.029|0.020|5.13|7.44|
|PatchNaNs::PatchNaNsFixture::(640x480, 32FC2)|0.304|0.058|0.040|5.25|7.65|
|PatchNaNs::PatchNaNsFixture::(640x480, 32FC3)|0.448|0.086|0.059|5.22|7.55|
|PatchNaNs::PatchNaNsFixture::(640x480, 32FC4)|0.601|0.133|0.083|4.51|7.23|
|PatchNaNs::PatchNaNsFixture::(1280x720, 32FC1)|0.451|0.093|0.060|4.83|7.52|
|PatchNaNs::PatchNaNsFixture::(1280x720, 32FC2)|0.892|0.184|0.126|4.85|7.06|
|PatchNaNs::PatchNaNsFixture::(1280x720, 32FC3)|1.345|0.311|0.230|4.32|5.84|
|PatchNaNs::PatchNaNsFixture::(1280x720, 32FC4)|1.831|0.546|0.436|3.35|4.20|
|PatchNaNs::PatchNaNsFixture::(1920x1080, 32FC1)|1.017|0.250|0.160|4.06|6.35|
|PatchNaNs::PatchNaNsFixture::(1920x1080, 32FC2)|2.077|0.646|0.605|3.21|3.43|
|PatchNaNs::PatchNaNsFixture::(1920x1080, 32FC3)|3.134|1.053|0.961|2.97|3.26|
|PatchNaNs::PatchNaNsFixture::(1920x1080, 32FC4)|4.222|1.436|1.288|2.94|3.28|
|PatchNaNs::PatchNaNsFixture::(3840x2160, 32FC1)|4.225|1.401|1.277|3.01|3.31|
|PatchNaNs::PatchNaNsFixture::(3840x2160, 32FC2)|8.310|2.953|2.635|2.81|3.15|
|PatchNaNs::PatchNaNsFixture::(3840x2160, 32FC3)|12.396|4.455|4.252|2.78|2.92|
|PatchNaNs::PatchNaNsFixture::(3840x2160, 32FC4)|17.174|5.831|5.824|2.95|2.95|
</details>
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
* Optimize some function with lasx.
Optimize some function with lasx. #23929
This patch optimizes some lasx functions and reduces the runtime of opencv_test_core from 662,238ms to 633603ms on the 3A5000 platform.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
* added more or less cross-platform (based on POSIX signal() semantics) method to detect various NEON extensions, such as FP16 SIMD arithmetics, BF16 SIMD arithmetics, SIMD dotprod etc. It could be propagated to other instruction sets if necessary.
* hopefully fixed compile errors
* continue to fix CI
* another attempt to fix build on Linux aarch64
* * reverted to the original method to detect special arm neon instructions without signal()
* renamed FP16_SIMD & BF16_SIMD to NEON_FP16 and NEON_BF16, respectively
* removed extra whitespaces
Add HAL implementation hooks to cv::flip() and cv::rotate() functions from core module #24233
Hello,
This change proposes the addition of HAL hooks for cv::flip() and cv::rotate() functions from OpenCV core module.
Flip and rotation are functions commonly available from 2D hardware accelerators. This is convenient provision to enable custom optimized implementation of image flip/rotation on systems embedding such accelerator.
Thank you
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Rewrite Universal Intrinsic code: float related part #24325
The goal of this series of PRs is to modify the SIMD code blocks guarded by CV_SIMD macro: rewrite them by using the new Universal Intrinsic API.
The series of PRs is listed below:
#23885 First patch, an example
#23980 Core module
#24058 ImgProc module, part 1
#24132 ImgProc module, part 2
#24166 ImgProc module, part 3
#24301 Features2d and calib3d module
#24324 Gapi module
This patch (hopefully) is the last one in the series.
This patch mainly involves 3 parts
1. Add some modifications related to float (CV_SIMD_64F)
2. Use `#if (CV_SIMD || CV_SIMD_SCALABLE)` instead of `#if CV_SIMD || CV_SIMD_SCALABLE`,
then we can get the `CV_SIMD` module that is not enabled for `CV_SIMD_SCALABLE` by looking for `if CV_SIMD`
3. Summary of `CV_SIMD` blocks that remains unmodified: Updated comments
- Some blocks will cause test fail when enable for RVV, marked as `TODO: enable for CV_SIMD_SCALABLE, ....`
- Some blocks can not be rewrited directly. (Not commented in the source code, just listed here)
- ./modules/core/src/mathfuncs_core.simd.hpp (Vector type wrapped in class/struct)
- ./modules/imgproc/src/color_lab.cpp (Array of vector type)
- ./modules/imgproc/src/color_rgb.simd.hpp (Array of vector type)
- ./modules/imgproc/src/sumpixels.simd.hpp (fixed length algorithm, strongly ralated with `CV_SIMD_WIDTH`)
These algorithms will need to be redesigned to accommodate scalable backends.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [ ] I agree to contribute to the project under Apache 2 License.
- [ ] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ ] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Optimization for parallelization when large core number #24280
**Problem description:**
When the number of cores is large, OpenCV’s thread library may reduce performance when processing parallel jobs.
**The reason for this problem:**
When the number of cores (the thread pool initialized the threads, whose number is as same as the number of cores) is large, the main thread will spend too much time on waking up unnecessary threads.
When a parallel job needs to be executed, the main thread will wake up all threads in sequence, and then wait for the signal for the job completion after waking up all threads. When the number of threads is larger than the parallel number of a job slices, there will be a situation where the main thread wakes up the threads in sequence and the awakened threads have completed the job, but the main thread is still waking up the other threads. The threads woken up by the main thread after this have nothing to do, and the broadcasts made by the waking threads take a lot of time, which reduce the performance.
**Solution:**
Reduce the time for the process of main thread waking up the worker threads through the following two methods:
• The number of threads awakened by the main thread should be adjusted according to the parallel number of a job slices. If the number of threads is greater than the number of the parallel number of job slices, the total number of threads awakened should be reduced.
• In the process of waking up threads in sequence, if the main thread finds that all parallel job slices have been allocated, it will jump out of the loop in time and wait for the signal for the job completion.
**Performance Test:**
The tests were run in the manner described by https://github.com/opencv/opencv/wiki/HowToUsePerfTests.
At core number = 160, There are big performance gain in some cases.
Take the following cases in the video module as examples:
OpticalFlowPyrLK_self::Path_Idx_Cn_NPoints_WSize_Deriv::("cv/optflow/frames/VGA_%02d.png", 2, 1, (9, 9), 11, true)
Performance improves 191%:0.185405ms ->0.0636496ms
perf::DenseOpticalFlow_VariationalRefinement::(320x240, 10, 10)
Performance improves 112%:23.88938ms -> 11.2562ms
Among all the modules, the performance improvement is greatest on module video, and there are also certain improvements on other modules.
At core number = 160, the times labeled below are the geometric mean of the average time of all cases for one module. The optimization is available on each module.
overall | time(ms) | | | | | | |
-- | -- | -- | -- | -- | -- | -- | -- | --
module name | gapi | dnn | features2d | objdetect | core | imgproc | stitching | video
original | 0.185 | 1.586 | 9.998 | 11.846 | 0.205 | 0.215 | 164.409 | 0.803
optimized | 0.174 | 1.353 | 9.535 | 11.105 | 0.199 | 0.185 | 153.972 | 0.489
Performance improves | 6% | 17% | 5% | 7% | 3% | 16% | 7% | 64%
Meanwhile, It is found that adjusting the order of test cases will have an impact on some test cases. For example, we used option --gtest-shuffle to run opencv_perf_gapi, the performance of TestPerformance::CmpWithScalarPerfTestFluid/CmpWithScalarPerfTest::(compare_f, CMP_GE, 1920x1080, 32FC1, { gapi.kernel_package }) case had 30% changes compared to the case without shuffle. I would like to ask if you have also encountered such a situation and could you share your experience?
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
* attempt to add 0d/1d mat support to OpenCV
* revised the patch; now 1D mat is treated as 1xN 2D mat rather than Nx1.
* a step towards 'green' tests
* another little step towards 'green' tests
* calib test failures seem to be fixed now
* more fixes _core & _dnn
* another step towards green ci; even 0D mat's (a.k.a. scalars) are now partly supported!
* * fixed strange bug in aruco/charuco detector, not sure why it did not work
* also fixed a few remaining failures (hopefully) in dnn & core
* disabled failing GAPI tests - too complex to dig into this compiler pipeline
* hopefully fixed java tests
* trying to fix some more tests
* quick followup fix
* continue to fix test failures and warnings
* quick followup fix
* trying to fix some more tests
* partly fixed support for 0D/scalar UMat's
* use updated parseReduce() from upstream
* trying to fix the remaining test failures
* fixed [ch]aruco tests in Python
* still trying to fix tests
* revert "fix" in dnn's CUDA tensor
* trying to fix dnn+CUDA test failures
* fixed 1D umat creation
* hopefully fixed remaining cuda test failures
* removed training whitespaces
Fix undefined behavior arithmetic in copyMakeBorder and adjustROI. #24260
This is due to the undefined: negative int multiplied by size_t pointer increment.
To test, compile with:
```
mkdir build
cd build
cmake ../ -DCMAKE_C_FLAGS_INIT="-fsanitize=undefined" -DCMAKE_CXX_FLAGS_INIT="-fsanitize=undefined" -DCMAKE_C_COMPILER="/usr/bin/clang" -DCMAKE_CXX_COMPILER="/usr/bin/clang++" -DCMAKE_SHARED_LINKER_FLAGS="-fsanitize=undefined -lubsan"
```
And run:
```
make -j opencv_test_core && ./bin/opencv_test_core --gtest_filter=*UndefinedBehavior*
```
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake