Accuracy tests for equalizeHist() added #25759
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Fix OpenCV.js tests #25732
### Pull Request Readiness Checklist
* Firefox tests passed
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Android SDK build script: HWAsan support added #25718
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Relates to #24603
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [X] I agree to contribute to the project under Apache 2 License.
- [X] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [X] The PR is proposed to the proper branch
- [X] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Tests added for mixed type arithmetic operations #25671
### Changes
* added accuracy tests for mixed type arithmetic operations
_Note: div-by-zero values are removed from checking since the result is implementation-defined in common case_
* added perf tests for the same cases
* fixed a typo in `getMulExtTab()` function that lead to dead code
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Suppress build warnings for GCC14 #25686Close#25674
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Fix Homography computation. #25665
The bug was introduced in https://github.com/opencv/opencv/pull/25308
I am sorry I do not have a proper test.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Support Global_Pool_2D ops in .tflite model #25613
### Pull Request Readiness Checklist
**Merge with extra**: https://github.com/opencv/opencv_extra/pull/1180
This PR adds support for `GlobalAveragePooling2D` and `GlobalMaxPool2D` on the TFlite backend. When the k`eep_dims` option is enabled, the output is a 2D tensor, necessitating the inclusion of an additional flatten layer. Additionally, the names of these layers have been updated to match the output tensor names generated by `generate.py` from the opencv_extra repository.
- [X] I agree to contribute to the project under Apache 2 License.
- [X] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [X] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [X] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [X] The feature is well documented and sample code can be built with the project CMake
Reverted contour approximation behavior #25680
Related issue #25663 - revert new function behavior despite it returning different result than the old one (reverts PR #25672).
Also added Coverity issue fix.
Port G-API ONNXRT backend into V2 API #25662
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [ ] I agree to contribute to the project under Apache 2 License.
- [ ] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ ] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Slice layer parser fix to support empty input case #25660
This PR fixes Slice Layer's parser to handle empty input cases (cases with initializer)
It fixed the issue rased in #24838
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
core: deployment compatibility for old mac after Accelerate New LAPACK fix#25625
Attempt to fix https://github.com/opencv/opencv/pull/24804#discussion_r1609957747
We may need to explicitly add build option `-DCMAKE_OSX_DEPLOYMENT_TARGET=12.0` or environment variable (`export MACOSX_DEPLOYMENT_TARGET=12.0`) for mac builds (python package most probably) on builders with new macOS (>= 13.3).
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
3rdparty: NDSRVP - A New 3rdparty Library with Optimizations Based on RISC-V P Extension v0.5.2 - Part 1: Basic Functions #25167
# Summary
### Previous context
From PR #24556:
>> * As you wrote, the P-extension differs from RVV thus can not be easily implemented via Universal Intrinsics mechanism, but there is another HAL mechanism for lower-level CPU optimizations which is used by the [Carotene](https://github.com/opencv/opencv/tree/4.x/3rdparty/carotene) library on ARM platforms. I suggest moving all non-dnn code to similar third-party component. For example, FAST algorithm should allow such optimization-shortcut: see https://github.com/opencv/opencv/blob/4.x/modules/features2d/src/hal_replacement.hpp
>> Reference documentation is here:
>>
>> * https://docs.opencv.org/4.x/d1/d1b/group__core__hal__interface.html
>> * https://docs.opencv.org/4.x/dd/d8b/group__imgproc__hal__interface.html
>> * https://docs.opencv.org/4.x/db/d47/group__features2d__hal__interface.html
>> * Carotene library is turned on here: 8bbf08f0de/CMakeLists.txt (L906-L911)
> As a test outside of this PR, A 3rdparty component called ndsrvp is created, containing one of the non-dnn code (integral_SIMD), and it works very well.
> All the non-dnn code in this PR have been removed, currently this PR can be focused on dnn optinizations.
> This HAL mechanism is quite suitable for rvp optimizations, all the non-dnn code is expected to be moved into ndsrvp soon.
### Progress
#### Part 1 (This PR)
- [Core](https://docs.opencv.org/4.x/d1/d1b/group__core__hal__interface.html)
- [x] Element-wise add and subtract
- [x] Element-wise minimum or maximum
- [x] Element-wise absolute difference
- [x] Bitwise logical operations
- [x] Element-wise compare
- [ImgProc](https://docs.opencv.org/4.x/dd/d8b/group__imgproc__hal__interface.html)
- [x] Integral
- [x] Threshold
- [x] WarpAffine
- [x] WarpPerspective
- [Features2D](https://docs.opencv.org/4.x/db/d47/group__features2d__hal__interface.html)
#### Part 2 (Next PR)
**Rough Estimate. Todo List May Change.**
- [Core](https://docs.opencv.org/4.x/d1/d1b/group__core__hal__interface.html)
- [ImgProc](https://docs.opencv.org/4.x/dd/d8b/group__imgproc__hal__interface.html)
- smaller remap HAL interface
- AdaptiveThreshold
- BoxFilter
- Canny
- Convert
- Filter
- GaussianBlur
- MedianBlur
- Morph
- Pyrdown
- Resize
- Scharr
- SepFilter
- Sobel
- [Features2D](https://docs.opencv.org/4.x/db/d47/group__features2d__hal__interface.html)
- FAST
### Performance Tests
The optimization does not contain floating point opreations.
**Absolute Difference**
Geometric mean (ms)
|Name of Test|opencv perf core Absdiff|opencv perf core Absdiff|opencv perf core Absdiff vs opencv perf core Absdiff (x-factor)|
|---|:-:|:-:|:-:|
|Absdiff::OCL_AbsDiffFixture::(640x480, 8UC1)|23.104|5.972|3.87|
|Absdiff::OCL_AbsDiffFixture::(640x480, 32FC1)|39.500|40.830|0.97|
|Absdiff::OCL_AbsDiffFixture::(640x480, 8UC3)|69.155|15.051|4.59|
|Absdiff::OCL_AbsDiffFixture::(640x480, 32FC3)|118.715|120.509|0.99|
|Absdiff::OCL_AbsDiffFixture::(640x480, 8UC4)|93.001|19.770|4.70|
|Absdiff::OCL_AbsDiffFixture::(640x480, 32FC4)|161.136|160.791|1.00|
|Absdiff::OCL_AbsDiffFixture::(1280x720, 8UC1)|69.211|15.140|4.57|
|Absdiff::OCL_AbsDiffFixture::(1280x720, 32FC1)|118.762|119.263|1.00|
|Absdiff::OCL_AbsDiffFixture::(1280x720, 8UC3)|212.414|44.692|4.75|
|Absdiff::OCL_AbsDiffFixture::(1280x720, 32FC3)|367.512|366.569|1.00|
|Absdiff::OCL_AbsDiffFixture::(1280x720, 8UC4)|285.337|59.708|4.78|
|Absdiff::OCL_AbsDiffFixture::(1280x720, 32FC4)|490.395|491.118|1.00|
|Absdiff::OCL_AbsDiffFixture::(1920x1080, 8UC1)|158.827|33.462|4.75|
|Absdiff::OCL_AbsDiffFixture::(1920x1080, 32FC1)|273.503|273.668|1.00|
|Absdiff::OCL_AbsDiffFixture::(1920x1080, 8UC3)|484.175|100.520|4.82|
|Absdiff::OCL_AbsDiffFixture::(1920x1080, 32FC3)|828.758|829.689|1.00|
|Absdiff::OCL_AbsDiffFixture::(1920x1080, 8UC4)|648.592|137.195|4.73|
|Absdiff::OCL_AbsDiffFixture::(1920x1080, 32FC4)|1116.755|1109.587|1.01|
|Absdiff::OCL_AbsDiffFixture::(3840x2160, 8UC1)|648.715|134.875|4.81|
|Absdiff::OCL_AbsDiffFixture::(3840x2160, 32FC1)|1115.939|1113.818|1.00|
|Absdiff::OCL_AbsDiffFixture::(3840x2160, 8UC3)|1944.791|413.420|4.70|
|Absdiff::OCL_AbsDiffFixture::(3840x2160, 32FC3)|3354.193|3324.672|1.01|
|Absdiff::OCL_AbsDiffFixture::(3840x2160, 8UC4)|2594.585|553.486|4.69|
|Absdiff::OCL_AbsDiffFixture::(3840x2160, 32FC4)|4473.543|4438.453|1.01|
**Bitwise Operation**
Geometric mean (ms)
|Name of Test|opencv perf core Bit|opencv perf core Bit|opencv perf core Bit vs opencv perf core Bit (x-factor)|
|---|:-:|:-:|:-:|
|Bitwise_and::OCL_BitwiseAndFixture::(640x480, 8UC1)|22.542|4.971|4.53|
|Bitwise_and::OCL_BitwiseAndFixture::(640x480, 32FC1)|90.210|19.917|4.53|
|Bitwise_and::OCL_BitwiseAndFixture::(640x480, 8UC3)|68.429|15.037|4.55|
|Bitwise_and::OCL_BitwiseAndFixture::(640x480, 32FC3)|280.168|59.239|4.73|
|Bitwise_and::OCL_BitwiseAndFixture::(640x480, 8UC4)|90.565|19.735|4.59|
|Bitwise_and::OCL_BitwiseAndFixture::(640x480, 32FC4)|374.695|79.257|4.73|
|Bitwise_and::OCL_BitwiseAndFixture::(1280x720, 8UC1)|67.824|14.873|4.56|
|Bitwise_and::OCL_BitwiseAndFixture::(1280x720, 32FC1)|279.514|59.232|4.72|
|Bitwise_and::OCL_BitwiseAndFixture::(1280x720, 8UC3)|208.337|44.234|4.71|
|Bitwise_and::OCL_BitwiseAndFixture::(1280x720, 32FC3)|851.211|182.522|4.66|
|Bitwise_and::OCL_BitwiseAndFixture::(1280x720, 8UC4)|279.529|59.095|4.73|
|Bitwise_and::OCL_BitwiseAndFixture::(1280x720, 32FC4)|1132.065|244.877|4.62|
|Bitwise_and::OCL_BitwiseAndFixture::(1920x1080, 8UC1)|155.685|33.078|4.71|
|Bitwise_and::OCL_BitwiseAndFixture::(1920x1080, 32FC1)|635.253|137.482|4.62|
|Bitwise_and::OCL_BitwiseAndFixture::(1920x1080, 8UC3)|474.494|100.166|4.74|
|Bitwise_and::OCL_BitwiseAndFixture::(1920x1080, 32FC3)|1907.340|412.841|4.62|
|Bitwise_and::OCL_BitwiseAndFixture::(1920x1080, 8UC4)|635.538|134.544|4.72|
|Bitwise_and::OCL_BitwiseAndFixture::(1920x1080, 32FC4)|2552.666|556.397|4.59|
|Bitwise_and::OCL_BitwiseAndFixture::(3840x2160, 8UC1)|634.736|136.355|4.66|
|Bitwise_and::OCL_BitwiseAndFixture::(3840x2160, 32FC1)|2548.283|561.827|4.54|
|Bitwise_and::OCL_BitwiseAndFixture::(3840x2160, 8UC3)|1911.454|421.571|4.53|
|Bitwise_and::OCL_BitwiseAndFixture::(3840x2160, 32FC3)|7663.803|1677.289|4.57|
|Bitwise_and::OCL_BitwiseAndFixture::(3840x2160, 8UC4)|2543.983|562.780|4.52|
|Bitwise_and::OCL_BitwiseAndFixture::(3840x2160, 32FC4)|10211.693|2237.393|4.56|
|Bitwise_not::OCL_BitwiseNotFixture::(640x480, 8UC1)|22.341|4.811|4.64|
|Bitwise_not::OCL_BitwiseNotFixture::(640x480, 32FC1)|89.975|19.288|4.66|
|Bitwise_not::OCL_BitwiseNotFixture::(640x480, 8UC3)|67.237|14.643|4.59|
|Bitwise_not::OCL_BitwiseNotFixture::(640x480, 32FC3)|276.324|58.609|4.71|
|Bitwise_not::OCL_BitwiseNotFixture::(640x480, 8UC4)|89.587|19.554|4.58|
|Bitwise_not::OCL_BitwiseNotFixture::(640x480, 32FC4)|370.986|77.136|4.81|
|Bitwise_not::OCL_BitwiseNotFixture::(1280x720, 8UC1)|67.227|14.541|4.62|
|Bitwise_not::OCL_BitwiseNotFixture::(1280x720, 32FC1)|276.357|58.076|4.76|
|Bitwise_not::OCL_BitwiseNotFixture::(1280x720, 8UC3)|206.752|43.376|4.77|
|Bitwise_not::OCL_BitwiseNotFixture::(1280x720, 32FC3)|841.638|177.787|4.73|
|Bitwise_not::OCL_BitwiseNotFixture::(1280x720, 8UC4)|276.773|57.784|4.79|
|Bitwise_not::OCL_BitwiseNotFixture::(1280x720, 32FC4)|1127.740|237.472|4.75|
|Bitwise_not::OCL_BitwiseNotFixture::(1920x1080, 8UC1)|153.808|32.531|4.73|
|Bitwise_not::OCL_BitwiseNotFixture::(1920x1080, 32FC1)|627.765|129.990|4.83|
|Bitwise_not::OCL_BitwiseNotFixture::(1920x1080, 8UC3)|469.799|98.249|4.78|
|Bitwise_not::OCL_BitwiseNotFixture::(1920x1080, 32FC3)|1893.591|403.694|4.69|
|Bitwise_not::OCL_BitwiseNotFixture::(1920x1080, 8UC4)|627.724|129.962|4.83|
|Bitwise_not::OCL_BitwiseNotFixture::(1920x1080, 32FC4)|2529.967|540.744|4.68|
|Bitwise_not::OCL_BitwiseNotFixture::(3840x2160, 8UC1)|628.089|130.277|4.82|
|Bitwise_not::OCL_BitwiseNotFixture::(3840x2160, 32FC1)|2521.817|540.146|4.67|
|Bitwise_not::OCL_BitwiseNotFixture::(3840x2160, 8UC3)|1905.004|404.704|4.71|
|Bitwise_not::OCL_BitwiseNotFixture::(3840x2160, 32FC3)|7567.971|1627.898|4.65|
|Bitwise_not::OCL_BitwiseNotFixture::(3840x2160, 8UC4)|2531.476|540.181|4.69|
|Bitwise_not::OCL_BitwiseNotFixture::(3840x2160, 32FC4)|10075.594|2181.654|4.62|
|Bitwise_or::OCL_BitwiseOrFixture::(640x480, 8UC1)|22.566|5.076|4.45|
|Bitwise_or::OCL_BitwiseOrFixture::(640x480, 32FC1)|90.391|19.928|4.54|
|Bitwise_or::OCL_BitwiseOrFixture::(640x480, 8UC3)|67.758|14.740|4.60|
|Bitwise_or::OCL_BitwiseOrFixture::(640x480, 32FC3)|279.253|59.844|4.67|
|Bitwise_or::OCL_BitwiseOrFixture::(640x480, 8UC4)|90.296|19.802|4.56|
|Bitwise_or::OCL_BitwiseOrFixture::(640x480, 32FC4)|373.972|79.815|4.69|
|Bitwise_or::OCL_BitwiseOrFixture::(1280x720, 8UC1)|67.815|14.865|4.56|
|Bitwise_or::OCL_BitwiseOrFixture::(1280x720, 32FC1)|279.398|60.054|4.65|
|Bitwise_or::OCL_BitwiseOrFixture::(1280x720, 8UC3)|208.643|45.043|4.63|
|Bitwise_or::OCL_BitwiseOrFixture::(1280x720, 32FC3)|850.042|180.985|4.70|
|Bitwise_or::OCL_BitwiseOrFixture::(1280x720, 8UC4)|279.363|60.385|4.63|
|Bitwise_or::OCL_BitwiseOrFixture::(1280x720, 32FC4)|1134.858|243.062|4.67|
|Bitwise_or::OCL_BitwiseOrFixture::(1920x1080, 8UC1)|155.212|33.155|4.68|
|Bitwise_or::OCL_BitwiseOrFixture::(1920x1080, 32FC1)|634.985|134.911|4.71|
|Bitwise_or::OCL_BitwiseOrFixture::(1920x1080, 8UC3)|474.648|100.407|4.73|
|Bitwise_or::OCL_BitwiseOrFixture::(1920x1080, 32FC3)|1912.049|414.184|4.62|
|Bitwise_or::OCL_BitwiseOrFixture::(1920x1080, 8UC4)|635.252|132.587|4.79|
|Bitwise_or::OCL_BitwiseOrFixture::(1920x1080, 32FC4)|2544.471|560.737|4.54|
|Bitwise_or::OCL_BitwiseOrFixture::(3840x2160, 8UC1)|634.574|134.966|4.70|
|Bitwise_or::OCL_BitwiseOrFixture::(3840x2160, 32FC1)|2545.129|561.498|4.53|
|Bitwise_or::OCL_BitwiseOrFixture::(3840x2160, 8UC3)|1910.900|419.365|4.56|
|Bitwise_or::OCL_BitwiseOrFixture::(3840x2160, 32FC3)|7662.603|1685.812|4.55|
|Bitwise_or::OCL_BitwiseOrFixture::(3840x2160, 8UC4)|2548.971|560.787|4.55|
|Bitwise_or::OCL_BitwiseOrFixture::(3840x2160, 32FC4)|10201.407|2237.552|4.56|
|Bitwise_xor::OCL_BitwiseXorFixture::(640x480, 8UC1)|22.718|4.961|4.58|
|Bitwise_xor::OCL_BitwiseXorFixture::(640x480, 32FC1)|91.496|19.831|4.61|
|Bitwise_xor::OCL_BitwiseXorFixture::(640x480, 8UC3)|67.910|15.151|4.48|
|Bitwise_xor::OCL_BitwiseXorFixture::(640x480, 32FC3)|279.612|59.792|4.68|
|Bitwise_xor::OCL_BitwiseXorFixture::(640x480, 8UC4)|91.073|19.853|4.59|
|Bitwise_xor::OCL_BitwiseXorFixture::(640x480, 32FC4)|374.641|79.155|4.73|
|Bitwise_xor::OCL_BitwiseXorFixture::(1280x720, 8UC1)|67.704|15.008|4.51|
|Bitwise_xor::OCL_BitwiseXorFixture::(1280x720, 32FC1)|279.229|60.088|4.65|
|Bitwise_xor::OCL_BitwiseXorFixture::(1280x720, 8UC3)|208.156|44.426|4.69|
|Bitwise_xor::OCL_BitwiseXorFixture::(1280x720, 32FC3)|849.501|180.848|4.70|
|Bitwise_xor::OCL_BitwiseXorFixture::(1280x720, 8UC4)|279.642|59.728|4.68|
|Bitwise_xor::OCL_BitwiseXorFixture::(1280x720, 32FC4)|1129.826|242.880|4.65|
|Bitwise_xor::OCL_BitwiseXorFixture::(1920x1080, 8UC1)|155.585|33.354|4.66|
|Bitwise_xor::OCL_BitwiseXorFixture::(1920x1080, 32FC1)|634.090|134.995|4.70|
|Bitwise_xor::OCL_BitwiseXorFixture::(1920x1080, 8UC3)|474.931|99.598|4.77|
|Bitwise_xor::OCL_BitwiseXorFixture::(1920x1080, 32FC3)|1910.519|413.138|4.62|
|Bitwise_xor::OCL_BitwiseXorFixture::(1920x1080, 8UC4)|635.026|135.155|4.70|
|Bitwise_xor::OCL_BitwiseXorFixture::(1920x1080, 32FC4)|2560.167|560.838|4.56|
|Bitwise_xor::OCL_BitwiseXorFixture::(3840x2160, 8UC1)|634.893|134.883|4.71|
|Bitwise_xor::OCL_BitwiseXorFixture::(3840x2160, 32FC1)|2548.166|560.831|4.54|
|Bitwise_xor::OCL_BitwiseXorFixture::(3840x2160, 8UC3)|1911.392|419.816|4.55|
|Bitwise_xor::OCL_BitwiseXorFixture::(3840x2160, 32FC3)|7646.634|1677.988|4.56|
|Bitwise_xor::OCL_BitwiseXorFixture::(3840x2160, 8UC4)|2560.637|560.805|4.57|
|Bitwise_xor::OCL_BitwiseXorFixture::(3840x2160, 32FC4)|10227.044|2249.458|4.55|
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake