Merged yolo_detector and object detection sample #25710
Relates to #25006
This pull request merges the yolo_detector.cpp sample with the object_detector.cpp sample. It also beautifies the bounding box display on the output images
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Added and tested yolov5l model. #26154
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [X] The PR is proposed to the proper branch
- [X] There is a reference to the original bug report and related work
- [X] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [X] The feature is well documented and sample code can be built with the project CMake
Below is evidence of the test:
![v5l](https://github.com/user-attachments/assets/f31eff0b-11fc-44de-bdaf-640e67d1d924)
Improved and refactored text detection sample in dnn module #25326
Clean up samples: #25006
This pull requests merges and simplifies different text detection samples in dnn module of opencv in to one file. An option has been provided to choose the detection model from EAST or DB
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
❗ Potential conflicts with #25958
C-API cleanup: highgui, videoio #26025❗ Merge with: opencv/opencv_contrib#3780
This PR removes usage of C-API from highgui and videoio modules. Only source code is affected, tests were not using obsolete API.
It should be possible to backport these changes to 4.x branch preserving removed public headers and source files (`*_c.h` and `*_c.cpp`).
#### Checklist
I tried to verify as many backends as possible, though these checks were not as thorough as I'd like them to be. Below is the checklist covering all modified backends with their statuses.
> 🔹 - small changes
> 🟢 - consider working
> ⚪ - considered untested
##### highgui
Pass | Backend | Local check | CI check
-----|---------|-------------|---------
🟢 | GTK2 | build + test, plugin build | build + test ❔🟢 | GTK3 | build + test, plugin build | build + test
🟢 | QT | build + test, plugin build |
⚪ | Wayland 🔹 | |
🟢 | WIN32 🔹 | | build + test
🟢 | Cocoa 🔹 | | build + test
⚪ | WinRT | |
##### videoio
Pass | Backend | Local check | CI check
-----|---------|-------------|---------
🟢 | Android Camera/MediaNDK 🔹 | | build
🟢 | Aravis | build |
🟢 | AVFoundation OSX | | build + test
⚪ | AVFoundation iOS | | build
🟢 | DC1394 | build |
🟢 | DShow 🔹 | | build
🟢 | FFMpeg | build, plugin build | build + test
🟢 | GPhoto 🔹 | build |
🟢 | GStreamer | build, plugin build | build + test
🟢 | Images | build | build + test
🟢 | MSMF 🔹 | | build + test
🟢 | OpenNI | build |
🟢 | PVAPI | build |
🟢 | V4L | build + test | build
🟢 | XIMEA | build |
🟢 | XINE 🔹 | build |
#### Notes
- local linux build checks performed using [this framework](https://github.com/mshabunin/opencv-videoio-build-check)
- minor extra changes made in both `cap_avfoundation*.mm` to make them slightly more synchronized - it would be better to combine them into a single one in the future
- configurations with plugins have been build but not tested
- **moved unrelated changes to separate PRs** ~two issues have been fixed in separate commits:~
- ~imgproc: missing `cv::hal::` color conversion functions has been used in MediaSDK backend~
- ~videoio/V4L: wrong color conversion mode caused bad colors for NV12 camera input format (RGB instead of BGR)~
It would be nice to check following functionality manually:
- [ ] OSX: camera input
- [ ] iOS: camera and file input
- [ ] WinRT: build, some testing
- [x] Linux/Wayland: build
#25006#25314
This pull request removes hed_pretrained caffe model to the SOTA dexined onnx model for edge detection. Usage of conventional methods like canny has also been added
The obsolete cpp and python sample has been removed
TODO:
- [ ] Remove temporary hack for quantized models. Refer issue https://github.com/opencv/opencv_zoo/issues/273
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Diffusion Inpainting Sample #25950
This PR adds inpaiting sample that is based on [High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/pdf/2112.10752) paper (reference github [repository](https://github.com/CompVis/latent-diffusion)).
Steps to run the model:
1. Firstly needs ONNX graph of the Latent Diffusion Model. You can get it in two different ways.
> a. Generate the using this [repo](https://github.com/Abdurrahheem/latent-diffusion/tree/ash/export2onnx) and follow instructions below
```bash
git clone https://github.com/Abdurrahheem/latent-diffusion.git
cd latent-diffusion
conda env create -f environment.yaml
conda activate ldm
wget -O models/ldm/inpainting_big/last.ckpt https://heibox.uni-heidelberg.de/f/4d9ac7ea40c64582b7c9/?dl=1
python -m scripts.inpaint.py --indir data/inpainting_examples/ --outdir outputs/inpainting_results --export=True
```
> b. Download the ONNX graph (there 3 fiels) using this link: TODO make a link
2. Build opencv (preferebly with CUDA support enabled
3. Run the script
```bash
cd opencv/samples/dnn
python ldm_inpainting.py
python ldm_inpainting.py -e=<path-to-InpaintEncoder.onnx file> -d=<path-to-InpaintDecoder.onnx file> -df=<path-to-LatenDiffusion.onnx file> -i=<path-to-image>
```
Right after the last command you will be prompted with image. You can click on left mouse bottom and starting selection a region you would like to be inpainted (deleted). Once you finish marking the region, click on left mouse botton again and press esc button on your keyboard. The inpainting proccess will start.
Note: If you are running it on CPU it might take a large chank of time. Also make sure to have about 15GB of RAM to make process faster (other wise swapping will click in and everything will be slower)
Current challenges:
1. Diffusion process is slow (many layers fallback to CPU with running with CUDA backend)
2. The diffusion result is does exactly mach that of the original torch pipeline
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x]The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Improved samples/python/tracker.py docstring #25959
This PR removed unused arguments and updated existing argument placeholders to be more descriptive of what they are.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ ] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Improved classification sample #25519#25006#25314
This pull requests replaces the caffe model for classification with onnx versions. It also adds resnet in model.yml.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Removed obsolete python samples #25268
Clean Samples #25006
This PR removes 36 obsolete python samples from the project, as part of an effort to keep the codebase clean and focused on current best practices. Some of these samples will be updated with latest algorithms or will be combined with other existing samples.
Removed Samples:
> browse.py
camshift.py
coherence.py
color_histogram.py
contours.py
deconvolution.py
dft.py
dis_opt_flow.py
distrans.py
edge.py
feature_homography.py
find_obj.py
fitline.py
gabor_threads.py
hist.py
houghcircles.py
houghlines.py
inpaint.py
kalman.py
kmeans.py
laplace.py
lk_homography.py
lk_track.py
logpolar.py
mosse.py
mser.py
opt_flow.py
plane_ar.py
squares.py
stitching.py
text_skewness_correction.py
texture_flow.py
turing.py
video_threaded.py
video_v4l2.py
watershed.py
These changes aim to improve the repository's clarity and usability by removing examples that are no longer relevant or have been superseded by more up-to-date techniques.
Add sample for GPT2 inference #25868
### Pull Request Readiness Checklist
This PR adds sample for inferencing GPT-2 model. More specificly implementation of GPT-2 from [this repository](https://github.com/karpathy/build-nanogpt). Currently inference in OpenCV is only possible to do with fixed window size due to not supported dynamic shapes.
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Support OpenGL GTK3 New API #25822Fixes#20001
GSoC2024 Project
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Move API focused C++ samples to snippets #25252
Clean Samples #25006
This PR removes 39 outdated C++ samples from the project, as part of an effort to keep the codebase clean and focused on current best practices.
Add videocapture_depth.cpp sample #25410
The PR is to combine the examples `videocapture_openni.cpp`, `videocapture_realsense.cpp` and `videocapture_obsensor.cpp` into `videocapture_depth.cpp`.
Tested cameras and OS using this sample are listed below:
| | Windows 10 | Ubuntu 22.04 | Mac M1 14.3 |
|------------------------|--------------|--------------|---------------|
| Orbbec Gemini 2 Series | ✓ | ✓ | ✓ |
| RealSense D435, D455 | ✓ | ✓ | ✗ |
| Kinect, XtionPRO | - | - | - |
Note:
- OpenNI based cameras (Kinect, XtionPRO) are not tested as I don't have them.
- RealSense D435 and D455 don't work on Mac with OpenCV.
[BUG FIX] Segmentation sample u2netp model results #25756
PR resloves #25753 related to incorrect output from u2netp model in segmentation sample
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Add sample support of YOLOv9 and YOLOv10 in OpenCV #25794
This PR adds sample support of [`YOLOv9`](https://github.com/WongKinYiu/yolov9) and [`YOLOv10`](https://github.com/THU-MIG/yolov10/tree/main)) in OpenCV. Models for this test are located in this [PR](https://github.com/opencv/opencv_extra/pull/1186).
**Running YOLOv10 using OpenCV.**
1. In oder to run `YOLOv10` one needs to cut off postporcessing with dynamic shapes from torch and then convert it to ONNX. If someone is looking for ready solution, there is [this forked branch](https://github.com/Abdurrahheem/yolov10/tree/ash/opencv-export) from official YOLOv10. Particularty follow this proceduce.
```bash
git clone git@github.com:Abdurrahheem/yolov10.git
conda create -n yolov10 python=3.9
conda activate yolov10
pip install -r requirements.txt
python export_opencv.py --model=<model-name> --imgsz=<input-img-size>
```
By default `model="yolov10s"` and `imgsz=(480,640)`. This will generate file `yolov10s.onnx`, which can be use for inference in OpenCV
2. For inference part on OpenCV. one can use `yolo_detector.cpp` [sample](https://github.com/opencv/opencv/blob/4.x/samples/dnn/yolo_detector.cpp). If you have followed above exporting procedure, then you can use following command to run the model.
``` bash
build opencv from source
cd build
./bin/example_dnn_yolo_detector --model=<path-to-yolov10s.onnx-file> --yolo=yolov10 --width=640 --height=480 --input=<path-to-image> --scale=0.003921568627 --padvalue=114
```
If you do not specify `--input` argument, OpenCV will grab first camera that is avaliable on your platform.
For more deatils on how to run the `yolo_detector.cpp` file see this [guide](https://docs.opencv.org/4.x/da/d9d/tutorial_dnn_yolo.html#autotoc_md443)
**Running YOLOv9 using OpenCV**
1. Export model following [official guide](https://github.com/WongKinYiu/yolov9)of the YOLOv9 repository. Particularly you can do following for converting.
```bash
git clone https://github.com/WongKinYiu/yolov9.git
cd yolov9
conda create -n yolov9 python=3.9
conda activate yolov9
pip install -r requirements.txt
wget https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-t-converted.pt
python export.py --weights=./yolov9-t-converted.pt --include=onnx --img-size=(480,640)
```
This will generate <yolov9-t-converted.onnx> file.
2. Inference on OpenCV.
```bash
build opencv from source
cd build
./bin/example_dnn_yolo_detector --model=<path-to-yolov9-t-converted.onnx> --yolo=yolov9 --width=640 --height=480 --scale=0.003921568627 --padvalue=114 --path=<path-to-image>
```
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Update the tutorial of using Orbbec Astra cameras #25813
This PR is the backport of Orbbec OpenNI-based Astra camera related changes from #25410 to the 4.x branch, which includes updating the tutorial of Orbbec Astra cameras, renaming `orbbec_astra.cpp`.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Add yolov8l.onnx to samples #25775
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Hello, I noticed that the /samples/dnn/models.yml said it should be used for all yolov8 models, but the YOLOv8l is not included in the file, so I added it to the file, thanks.
![image](https://github.com/opencv/opencv/assets/89371302/7a7b0090-ef4c-478d-8f24-7d99260fe0c9)
video: fix vittrack in the case where crop size grows until out-of-memory when the input is black #25771
Fixes https://github.com/opencv/opencv/issues/25760
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Improved segmentation sample #25559#25006
This pull request replaces caffe models with onnx for the dnn segmentation sample in cpp and python
fcnresnet-50 and fcnresnet-101 has been replaced
u2netp (foreground-background) segmentation onnx model has been added [U2NET](https://github.com/xuebinqin/U-2-Net)
### Pull Request Readiness Checklist
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Change opencv_face_detector related tests and samples from caffe to onnx #25463
Part of https://github.com/opencv/opencv/issues/25314
This PR aims to change the tests related to opencv_face_detector from caffe framework to onnx. Tests in `test_int8_layer.cpp` and `test_caffe_importer.cpp` will be removed in https://github.com/opencv/opencv/pull/25323
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Remove goturn caffe model #25503
**Merged with:** https://github.com/opencv/opencv_extra/pull/1174
**Merged with:** https://github.com/opencv/opencv_contrib/pull/3729
Part of https://github.com/opencv/opencv/issues/25314
This PR aims to remove goturn tracking model because Caffe importer will be remove in 5.0
The GOTURN model will take **388 MB** of traffic for each download if converted to onnx. If the user wants to use the tracking method, we can recommend they use Vit or dasimRPN.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Replaced caffe model with onnx for colorization sample #25433#25006
Improved sample for colorization with onnx model in cpp and python. Added a demo image in data folder for testing
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Improving the drawing cpp sample to draw shapes based on user input #25415
Relates to #25006
The updated samples allows user to draw random shapes by using hot keys.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Move Charuco/Calib tutorials and samples to main repo #25378
Merge with https://github.com/opencv/opencv_contrib/pull/3708
Move Charuco/Calib tutorials and samples to main repo:
- [x] update/fix charuco_detection.markdown and samples
- [x] update/fix charuco_diamond_detection.markdown and samples
- [x] update/fix aruco_calibration.markdown and samples
- [x] update/fix aruco_faq.markdown
- [x] move tutorials, samples and tests to main repo
- [x] remove old tutorials, samples and tests from contrib
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Fix mesh loading for texture coordinates and face indices #25382
### This PR changes
* Texture coordinates were stored incorrectly (3-channel array is read as if there were 2 channels), fixed
* Faces were pushed back to the output array instead of indexed writing which produced a lot of empty faces, fixed
* A set of ground truth tests were added to cover these issues
* `std::vector<cv::Mat>` support added for `saveMesh()` which is required for Python bindings
* More command line args were added to rasterization test data generator
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Geometry C++ sample combining other shape detection samples #25304
Clean Samples #25006
This PR removes adds a new cpp sample (geometry) which combines different methods of finding and drawing shapes in an image. It makes separate samples for convexHull, fitellipse, minAreaRect, minAreaCircle redudant. Shapes can be changed using hotkeys after running the program
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Added and tested yolov8m model. #25357
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [X] I agree to contribute to the project under Apache 2 License.
- [X] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [X] The PR is proposed to the proper branch
- [X] There is a reference to the original bug report and related work
- [X] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [X] The feature is well documented and sample code can be built with the project CMake
Below is evidence of the test:
![yolov8m](https://github.com/opencv/opencv/assets/675645/f9bfe2c6-fe4a-42fc-93a6-17e4da5c9bb5)
Orbbec Camera supports MacOS,Gemini2 and Gemini2L support Y16 format #24877
note:
1.Gemini2 and Gemini2L must use the latest firmware -- https://github.com/orbbec/OrbbecFirmware;
2.Administrator privileges are necessary to run on MacOS.
Added and tested yolov8s and yolov8n model #25176
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [X] I agree to contribute to the project under Apache 2 License.
- [X] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [X] The PR is proposed to the proper branch
- [X] There is a reference to the original bug report and related work
- [X] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [X] The feature is well documented and sample code can be built with the project CMake
Below is evidence of the test:
![yolos-n](https://github.com/opencv/opencv/assets/675645/f3bd19ae-85a4-4747-9fa9-f6e31257d2d5)