All classes are registered in the scope that corresponds to C++
namespace or exported class.
Example:
`cv::ml::Boost` is exported as `cv.ml.Boost`
`cv::SimpleBlobDetector::Params` is exported as
`cv.SimpleBlobDetector.Params`
For backward compatibility all classes are registered in the global
module with their mangling name containing scope information.
Example:
`cv::ml::Boost` has `cv.ml_Boost` alias to `cv.ml.Boost` type
- Add special case handling when submodule has the same name as parent
- `PyDict_SetItemString` doesn't steal reference, so reference count
should be explicitly decremented to transfer object life-time
ownership
- Add sanity checks for module registration input
Comment from Python documentation:
Unlike other functions that steal references, `PyModule_AddObject()` only
decrements the reference count of value on success.
This means that its return value must be checked, and calling code must
`Py_DECREF()` value manually on error.
`PyObject*` to `std::vector<T>` conversion logic:
- If user passed Numpy Array
- If array is planar and T is a primitive type (doesn't require
constructor call) that matches with the element type of array, then
copy element one by one with the respect of the step between array
elements. If compiler is lucky (or brave enough) copy loop can be
vectorized.
For classes that require constructor calls this path is not
possible, because we can't begin an object lifetime without hacks.
- Otherwise fall-back to general case
- Otherwise - execute the general case:
If PyObject* corresponds to Sequence protocol - iterate over the
sequence elements and invoke the appropriate `pyopencv_to` function.
`std::vector<T>` to `PyObject*` conversion logic:
- If `std::vector<T>` is empty - return empty tuple.
- If `T` has a corresponding `Mat` `DataType` than return
Numpy array instance of the matching `dtype` e.g.
`std::vector<cv::Rect>` is returned as `np.ndarray` of shape `Nx4` and
`dtype=int`.
This branch helps to optimize further evaluations in user code.
- Otherwise - execute the general case:
Construct a tuple of length N = `std::vector::size` and insert
elements one by one.
Unnecessary functions were removed and code was rearranged to allow
compiler select the appropriate conversion function specialization.
Currently, the LOADER_DIR is set as os.path.dirname(os.path.abspath(__file__)). This does not point to the true library path if the cv2 folder is symlinked into the Python package directory such that importing cv2 under Python fails. The proposed change only resolves symbolic links correctly by calling os.path.realpath(__file__) first and does not change anything if __file__ contains no symbolic link.
they might be thrown from third-party code (notably Ogre in the ovis
module).
While Linux is kind enough to print them, they cause instant termination
on Windows.
Arguably, they do not origin from OpenCV itself, but still this helps
understanding what went wrong when calling an OpenCV function.