Commit Graph

523 Commits

Author SHA1 Message Date
berak
e13f6ded7f ml: fix adjusting K in KNearest (#12358) 2018-08-31 16:07:53 +03:00
Alexander Alekhin
6e84abc746 ml: don't use "getSubVector()" with 2D matrix
It is designed for 1D vectors only
2018-08-18 20:50:36 +00:00
Alexander Alekhin
7ee69740e8 ml(test): test different samples layout of TrainData 2018-08-17 16:57:20 +03:00
luz.paz
2003eb1b9b Misc. typos
Found via `codespell -q 3 -I ../opencv-whitelist.txt --skip="./3rdparty"`
2018-07-31 18:44:23 +03:00
Maksim Shabunin
cbb1e867e5 More issues found by static analysis 2018-07-24 16:04:42 +03:00
Maksim Shabunin
1da46fe6fb Fixed issues found by static analysis (mostly DBZ) 2018-07-17 16:14:54 +03:00
Alexander Alekhin
b09a4a98d4 opencv: Use cv::AutoBuffer<>::data() 2018-07-04 19:11:29 +03:00
Alexander Alekhin
d1d7408a20 Merge pull request #11502 from berak:fix_knearest 2018-05-11 11:47:13 +00:00
berak
9b0ef7bb17 ml: fix caching of internal state when changing the impl in KNearest 2018-05-11 12:20:17 +02:00
Alexander Alekhin
6b581c4e51 build: unreachable code after CV_Error() (part 2) 2018-04-24 16:03:40 +03:00
lopespt
65d816c3b5 Adds efficient sort algorithm to KNearest 2018-04-04 09:35:58 -03:00
Alexander Alekhin
4d0dd3e509 ml: apply CV_OVERRIDE/CV_FINAL 2018-03-28 18:43:27 +03:00
Vadim Pisarevsky
284e5231c5 Merge pull request #11171 from codingforfun:fix_11143 2018-03-28 12:47:37 +00:00
codingforfun
24e2e0d3f9 #11143 [FIX] Normalize node risk with sample weight sum
In case of regression trees, node risk is computed as sum of squared
error. To get a meaningfull value to compare with it needs to be
normalized to the number of samples in the node (or more generally to
the sum of sample weights in this node). Otherwise the sum of squared
error is highly dependend on the number of samples in the node and
comparision with `regressionAccuracy` parameter is not very meaningful.

After normalization `node_risk` means in fact sample variance for all
samples in the node, which makes much more sence and seams to be what
was originaly intended by the code given that node risk is later used as
a split termination criteria by
```
sqrt(node.node_risk) < params.getRegressionAccuracy()
```
2018-03-27 15:39:36 +02:00
Maksim Shabunin
92e9d4ec3a Fixed several issues detected by static analysis 2018-02-22 17:11:33 +03:00
Alexander Alekhin
12d2bd4adb ml: refactor ML_ANN test 2018-02-19 21:35:48 +03:00
luz.paz
e805a55a5b Misc. modules/ typos (cont.)
Found via `codespell`
2018-02-12 10:15:36 -05:00
Alexander Alekhin
4a297a2443 ts: refactor OpenCV tests
- removed tr1 usage (dropped in C++17)
- moved includes of vector/map/iostream/limits into ts.hpp
- require opencv_test + anonymous namespace (added compile check)
- fixed norm() usage (must be from cvtest::norm for checks) and other conflict functions
- added missing license headers
2018-02-03 19:39:47 +00:00
Alexander Alekhin
00e43a9022 ml(ANN_MLP): ensure that train() call is always successful 2017-12-22 18:50:04 +00:00
Alexander Alekhin
289a8da39e ml: simplify interfaces of SimulatedAnnealingSolver 2017-12-22 16:35:48 +03:00
LaurentBerger
e43997dbb5 Calcerror uses now weighted samples (#10346)
* Calcerror uses now sample weights

* catree comment in #10319
2017-12-20 17:24:46 +03:00
Alexander Alekhin
aef3019152 ml: fix SimulatedAnnealingSolver interface 2017-12-15 21:44:32 +03:00
catree
0a439570a0 Move SimulatedAnnealingSolver::Impl in cpp file. Fix some typos. 2017-12-15 14:09:59 +01:00
LaurentBerger
7ad308ea47 Simulated Annealing for ANN_MLP training method (#10213)
* Simulated Annealing for ANN_MLP training method

* EXPECT_LT

* just to test new data

* manage RNG

* Try again

* Just run buildbot with new data

* try to understand

* Test layer

* New data- new test

* Force RNG in backprop

* Use Impl to avoid virtual method

* reset all weights

* try to solve ABI

* retry

* ABI solved?

* till problem with dynamic_cast

* Something is wrong

* Solved?

* disable backprop test

* remove ANN_MLP_ANNEALImpl

* Disable weight in varmap

* Add example for SimulatedAnnealing
2017-12-15 13:57:39 +03:00
Vadim Pisarevsky
614e254331 Merge pull request #10170 from LaurentBerger:Issue10166 2017-11-29 09:51:20 +00:00
LaurentBerger
a44573c43b Add ReLU and LeakyReLU activation function in ml module 2017-11-28 11:02:05 +01:00
LaurentBerger
606a5fd537 Try to solve issue 10166 2017-11-27 13:13:05 +01:00
LaurentBerger
b9cf65e905 Parallel version of calcError in statmodel 2017-11-09 21:29:06 +01:00
Vadim Pisarevsky
70c5d69640 Merge pull request #9310 from r2d3:svm_parallel 2017-09-18 09:32:41 +00:00
Vadim Pisarevsky
42cd061af0 Merge pull request #9581 from sovrasov:rtree_disable_cv 2017-09-13 13:20:52 +00:00
Maksim Shabunin
248e2c7d47 Fixed some issues found by static analysis 2017-09-08 12:22:12 +03:00
Vladislav Sovrasov
3eb9a655c7 ml: disable not implemented k-fold validation in RTrees 2017-09-07 15:49:46 +03:00
David Geldreich
7c334f45c6 trainAuto: uses parallel_for_ to dispatch all parameters combination to test 2017-08-08 13:27:02 +02:00
Rink Springer
3ce1bca670 Prevent crash when attempting to create training data without responses.
This is at least useful when using an SVM one-class linear classifier, so there are valid use cases.
2017-06-30 15:36:47 +02:00
Maksim Shabunin
a769d69a9d Fixed several issues found by static analysis 2017-06-28 18:06:18 +03:00
Maksim Shabunin
32d4af36e2 Fixing some static analysis issues 2017-06-27 14:30:26 +03:00
Alexander Alekhin
006966e629 trace: initial support for code trace 2017-06-26 17:07:13 +03:00
David Carlier
bacc210606 fixing segfaults occuring when launching those unit tests 2017-04-18 09:50:17 +01:00
Maksim Shabunin
8b455e8bb3 Fixed Algorithm.save and other methods work in Java 2017-04-05 17:48:38 +03:00
Julian Tanke
f70cc29edb export SVM::trainAuto to python #7224 (#8373)
* export SVM::trainAuto to python #7224

* workaround for ABI compatibility of SVM::trainAuto

* add parameter comments to new SVM::trainAuto function

* Export ParamGrid member variables
2017-03-23 16:00:19 +03:00
Vladislav Sovrasov
195c12f2db ml: remove useless namespace identifiers in SVM 2017-03-07 16:02:19 +03:00
Vadim Pisarevsky
e0ee2f769a Merge pull request #8116 from mrquorr:master 2017-03-02 11:07:23 +00:00
mrquorr
d8425d8881 finished for one sample
Finished with several samples support, need regression testing

Gave a more relevant name to function (getVotes)

Finished implicit implementation

Removed printf, finished regresion testing

Fixed conversion warning

Finished test for Rtrees

Fixed documentation

Initialized variable

Added doxygen documentation

Added parameter name
2017-02-28 11:14:33 -06:00
Maksim Shabunin
13dffa0017 Merge pull request #8103 from sovrasov:em_docs_update 2017-01-31 09:10:37 +00:00
Vladislav Sovrasov
a789c08588 ml::EM: add documentation for predict() method 2017-01-30 17:38:13 +03:00
Alexander Alekhin
75533fcd06 Merge pull request #8098 from chrizandr:Tree_load_Wrapper
Add wrappers for load functions for DTrees and Boost classifiers
2017-01-30 17:25:23 +03:00
chrizandr
519fbdb8ab Wrappers for load methods of EM, LR, SVMSGD and Normal Bayes Classifier 2017-01-29 18:51:55 +05:30
chrizandr
d22df8c41f Add wrappers for load functions for DTrees and Boost classifiers 2017-01-29 15:55:38 +05:30
Vadim Pisarevsky
2bac66a181 Merge pull request #8004 from chrizandr:RTrees_load_wrapper 2017-01-24 11:55:42 +00:00
chrizandr
e3ec3566d9 RTrees: Add wrapper for RTrees_load method to enable loading trained RTrees 2017-01-19 17:16:45 +05:30