Commit Graph

1799 Commits

Author SHA1 Message Date
fengyuentau
fcaa8ce3c2 fix incorrect steps and elemsize when dtype changes 2024-02-06 16:27:25 +08:00
Haosonn
87f749277d
Merge pull request #24768 from Haosonn:pre-pr-2
Vulkan backend for NaryEltwiseLayer in DNN module #24768

We improve Vulkan backend for ``NaryEltwiseLayer`` in DNN module by:

- add a basic framework for Vulkan backend in ``NaryEltwiseLayer``
- add a compute shader for binary forwarding (an imitation of what has been done in native OpenCV backend including broadcasting and eltwise-operation)
- typo fixed:
  - Wrong info output in ``context.cpp``

Currently, our implementation (or all layers supporting Vulkan backend) runs pretty slow on discrete GPUs basically due to IO cost in function ``copyToHost``, and we are going to fix that by

- find out the best ``VkMemoryProperty`` for various discrete GPUs

- prevent ``copyToHost`` in middle layers during forwarding, (i.e keep data in GPU memory)
### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake

Co-authored-by: IskXCr <IskXCr@outlook.com>
2024-01-29 18:41:49 +03:00
Alexander Alekhin
efc9837df1
Merge pull request #24892 from opencv-pushbot:gitee/alalek/dnn_avoid_16s_usage
DNN: avoid CV_16S usage for FP16 #24892

**Merge after**: #24918

TODO:
- [x] measure performance changes
- [x] optimize convertTo for OpenCL: #24918

12700K iGPU:

|Name of Test|0|1|1 vs 0 (x-factor)|
|---|:-:|:-:|:-:|
|AlexNet::DNNTestNetwork::OCV/OCL_FP16|7.441|7.480|0.99|
|CRNN::DNNTestNetwork::OCV/OCL_FP16|10.776|10.736|1.00|
|DenseNet_121::DNNTestNetwork::OCV/OCL_FP16|52.762|52.833|1.00|
|EAST_text_detection::DNNTestNetwork::OCV/OCL_FP16|60.694|60.721|1.00|
|EfficientNet::DNNTestNetwork::OCV/OCL_FP16|33.373|33.173|1.01|
|FastNeuralStyle_eccv16::DNNTestNetwork::OCV/OCL_FP16|81.840|81.724|1.00|
|GoogLeNet::DNNTestNetwork::OCV/OCL_FP16|20.965|20.927|1.00|
|Inception_5h::DNNTestNetwork::OCV/OCL_FP16|22.204|22.173|1.00|
|Inception_v2_SSD_TensorFlow::DNNTestNetwork::OCV/OCL_FP16|47.115|47.460|0.99|
|MPHand::DNNTestNetwork::OCV/OCL_FP16|6.760|6.670|1.01|
|MPPalm::DNNTestNetwork::OCV/OCL_FP16|10.188|10.171|1.00|
|MPPose::DNNTestNetwork::OCV/OCL_FP16|12.510|12.561|1.00|
|MobileNet_SSD_Caffe::DNNTestNetwork::OCV/OCL_FP16|17.290|17.072|1.01|
|MobileNet_SSD_v1_TensorFlow::DNNTestNetwork::OCV/OCL_FP16|19.473|19.306|1.01|
|MobileNet_SSD_v2_TensorFlow::DNNTestNetwork::OCV/OCL_FP16|22.874|23.404|0.98|
|OpenFace::DNNTestNetwork::OCV/OCL_FP16|9.568|9.517|1.01|
|OpenPose_pose_mpi_faster_4_stages::DNNTestNetwork::OCV/OCL_FP16|539.899|539.845|1.00|
|PPHumanSeg::DNNTestNetwork::OCV/OCL_FP16|18.015|18.769|0.96|
|PPOCRv3::DNNTestNetwork::OCV/OCL_FP16|63.122|63.540|0.99|
|ResNet_50::DNNTestNetwork::OCV/OCL_FP16|34.947|34.925|1.00|
|SFace::DNNTestNetwork::OCV/OCL_FP16|10.249|10.206|1.00|
|SSD::DNNTestNetwork::OCV/OCL_FP16|213.068|213.108|1.00|
|SqueezeNet_v1_1::DNNTestNetwork::OCV/OCL_FP16|4.867|4.878|1.00|
|VIT_B_32::DNNTestNetwork::OCV/OCL_FP16|200.563|190.788|1.05|
|VitTrack::DNNTestNetwork::OCV/OCL_FP16|7.528|7.173|1.05|
|YOLOX::DNNTestNetwork::OCV/OCL_FP16|132.858|132.701|1.00|
|YOLOv3::DNNTestNetwork::OCV/OCL_FP16|209.559|208.809|1.00|
|YOLOv4::DNNTestNetwork::OCV/OCL_FP16|221.357|220.924|1.00|
|YOLOv4_tiny::DNNTestNetwork::OCV/OCL_FP16|24.446|24.382|1.00|
|YOLOv5::DNNTestNetwork::OCV/OCL_FP16|43.922|44.080|1.00|
|YOLOv8::DNNTestNetwork::OCV/OCL_FP16|64.159|63.842|1.00|
|YuNet::DNNTestNetwork::OCV/OCL_FP16|10.177|10.231|0.99|
|opencv_face_detector::DNNTestNetwork::OCV/OCL_FP16|15.121|15.445|0.98|

Co-authored-by: Alexander Alekhin <alexander.a.alekhin@gmail.com>
2024-01-26 16:34:17 +03:00
Yuantao Feng
37156a4719
Merge pull request #24925 from fengyuentau:loongarch_handle_warnings
Handle warnings in loongson-related code #24925

See https://github.com/fengyuentau/opencv/actions/runs/7665377694/job/20891162958#step:14:16

Warnings needs to be handled before we add the loongson server to our CI.

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2024-01-26 13:38:00 +03:00
Sean McBride
e64857c561
Merge pull request #23736 from seanm:c++11-simplifications
Removed all pre-C++11 code, workarounds, and branches #23736

This removes a bunch of pre-C++11 workrarounds that are no longer necessary as C++11 is now required.
It is a nice clean up and simplification.

* No longer unconditionally #include <array> in cvdef.h, include explicitly where needed
* Removed deprecated CV_NODISCARD, already unused in the codebase
* Removed some pre-C++11 workarounds, and simplified some backwards compat defines
* Removed CV_CXX_STD_ARRAY
* Removed CV_CXX_MOVE_SEMANTICS and CV_CXX_MOVE
* Removed all tests of CV_CXX11, now assume it's always true. This allowed removing a lot of dead code.
* Updated some documentation consequently.
* Removed all tests of CV_CXX11, now assume it's always true
* Fixed links.

---------

Co-authored-by: Maksim Shabunin <maksim.shabunin@gmail.com>
Co-authored-by: Alexander Smorkalov <alexander.smorkalov@xperience.ai>
2024-01-19 16:53:08 +03:00
fengyuentau
d269de0a03 initial commit 2024-01-18 11:17:50 +08:00
Alexander Smorkalov
ac4c0bffac
Merge pull request #24813 from fengyuentau:speedup_scatter
dnn: improve scatter and scatterND speed with multi-threading
2024-01-17 17:16:50 +03:00
Alexander Smorkalov
84bb1cda4e
Merge pull request #24865 from asmorkalov:as/dnn_concat_assert
Normalize axis parameter in DNN Concat to handle negative values
2024-01-16 14:39:28 +03:00
Alexander Smorkalov
26cf82a56c Normalize axis parameter in DNN Concat to handle negative values. 2024-01-16 12:22:22 +03:00
Alexander Smorkalov
99c86bb40c
Merge pull request #24556 from plctlab:rvp
Optimization based on RISC-V P Packed SIMD Extension v0.5.2
2024-01-16 11:36:31 +03:00
Alexander Smorkalov
68dc02e302
Merge pull request #24858 from Dhanwanth1803:avx-fix
Use AVX2 overload instread on AVX in AVX2 scope
2024-01-16 09:14:31 +03:00
Dhanwanth1803
a289eba357 Fixes #24677 2024-01-13 09:56:56 +05:30
jimmylaw21
a7fa1e6f4b
Merge pull request #24610 from jimmylaw21:dnn-onnx-add-group-norm-layer
dnn onnx: add group norm layer #24610

dnn onnx: add group norm layer

Todo:

- [x] speed up by multi-threading
- [x] add perf
- [x] add backend: OpenVINO
- [x] add backend: CUDA
- [x] add backend: OpenCL (no fp16)
- [ ] add backend: CANN

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake

Co-authored-by: fengyuentau <yuantao.feng@opencv.org.cn>
2024-01-12 15:13:26 +03:00
Alexander Smorkalov
97c418ab86
Merge pull request #24840 from fengyuentau:ocl_innerproduct
dnn (opencl): integrate bias handling in the inner product opencl kernel
2024-01-12 15:10:16 +03:00
Abduragim Shtanchaev
c923c59833
Merge pull request #24812 from Abdurrahheem:ash/einsum_bachedGemm
Replace interactive batched Matrix Multiply. #24812

This PR replaces iterative batch matrix multiplication which `FastGemmBatch` in Einsum layer.

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2024-01-12 14:23:43 +03:00
Yuantao Feng
e7ccff9805
Merge pull request #24834 from fengyuentau:cuda_naryeltwise_broadcast
dnn (cuda): support broadcasting if a.rank() != b.rank() #24834

Inspired by https://github.com/opencv/opencv/pull/24786. This PR keeps the fusion of `NaryEltwise` and `Concat` while addressed the data missing problem via supporting broadcasting if a.rank() != b.rank().

Resolves https://github.com/opencv/opencv/issues/23977
Resolves https://github.com/opencv/opencv/issues/24606
Resolves https://github.com/opencv/opencv/issues/24635
Resolves https://github.com/opencv/opencv/issues/24721 

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2024-01-11 10:04:46 +03:00
fengyuentau
83acb656f1 integrate bias handling in ocl kernel 2024-01-11 11:15:17 +08:00
Yuantao Feng
7fb336322d
Merge pull request #24808 from fengyuentau:fix_layernorm
dnn: no layer norm fusion if axes.back() is not the axis of last dimension #24808

Merge with https://github.com/opencv/opencv_extra/pull/1137

Resolves https://github.com/opencv/opencv/issues/24797

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2024-01-10 13:01:00 +03:00
Yuantao Feng
c955564cb3
Merge pull request #24765 from fengyuentau:mod_operator
dnn onnx: add mod #24765

Resolves https://github.com/opencv/opencv/issues/23174

TODO:

- [x] enable some conformance tests
- [x] add backends
    - [x] CANN
    - [x] OpenVINO
    - [x] CUDA

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2024-01-09 19:00:17 +03:00
fengyuentau
2ed97b9ef3 multi-threaded scatterND and refactor perf 2024-01-05 18:15:59 +08:00
fengyuentau
2997b4c5fe pretty format 2024-01-05 18:15:27 +08:00
fengyuentau
63cde0b90d multi-threaded scatter and refactor perf 2024-01-05 17:24:09 +08:00
Yuantao Feng
f978c99523
Merge pull request #24753 from fengyuentau:einsum_importer
dnn onnx: support constaint inputs in einsum importer #24753 

Merge with https://github.com/opencv/opencv_extra/pull/1132.

Resolves https://github.com/opencv/opencv/issues/24697

Credits to @LaurentBerger.

---

This is a workaround. I suggest to get input shapes and calculate the output shapes in `getMemoryShapes` so as to keep the best compatibility. It is not always robust getting shapes during the importer stage and we should avoid that as much as possible.

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-12-25 14:42:05 +03:00
Dmitry Kurtaev
938bc4d503 [CUDA] Hotfix Scale with 1 parameter 2023-12-22 15:49:27 +03:00
Dhanwanth1803
027aee8ad4
Merge pull request #24384 from Dhanwanth1803:feat-crop
Fixes #22747. Support [crop] configuration for DarkNet #24384

Request for comments. This is my first PR. 

**Merge with extra**: https://github.com/opencv/opencv_extra/pull/1112

resolves https://github.com/opencv/opencv/issues/22747

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-12-22 14:55:01 +03:00
Vadim Pisarevsky
853e5dfcdf
Merge pull request #24709 from vpisarev:winograd_mode
Try to enable Winograd by default in FP32 mode and disable it by default in FP16 mode #24709

Hopefully, it will resolve regressions since 4.8.1 (see also https://github.com/opencv/opencv/pull/24587)

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [ ] I agree to contribute to the project under Apache 2 License.
- [ ] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ ] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-12-22 09:22:31 +03:00
Alexander Smorkalov
35e2ef8019
Merge pull request #24740 from opencv-pushbot:gitee/alalek/ocl_fix_kernel_compilation
ocl: fix kernels compilation
2023-12-22 09:20:47 +03:00
Alexander Alekhin
3340c71a2a ocl: fix kernels compilation 2023-12-21 14:29:23 +00:00
Alexander Alekhin
99c94d3d83 dnn(ocl): don't try KERNEL_TYPE_GEMM_LIKE with kernel_w > 16
- OpenCL kernel code doesn't support that
2023-12-21 13:30:57 +00:00
llh721113
a30c987f87 feat: RVP052 Optimization for DNN int8layers 2023-12-21 14:51:41 +08:00
Yuantao Feng
0521a3a384
Merge pull request #24476 from fengyuentau:attention_layer
dnn: add attention layer #24476

Resolves #24609

Merge with: https://github.com/opencv/opencv_extra/pull/1128.

Attention operator spec from onnxruntime: https://github.com/microsoft/onnxruntime/blob/v1.16.1/docs/ContribOperators.md#com.microsoft.Attention.

TODO:
- [x] benchmark (before this PR vs. with this PR vs. ORT).
- [x] Layer fusion: Take care Slice with end=INT64_MAX.
- [x] Layer fusion: match more potential attention (VIT) patterns.
    - [x] Single-head attention is supported.
- [x] Test AttentionSubgraph fusion.
- [x] Add acc tests for VIT_B_32 and VitTrack
- [x] Add perf tests for VIT_B_32 and VitTrack

## Benchmarks

Platform: Macbook Air M1.

### Attention Subgraph

Input scale: [1, 197, 768].

|                        | mean (ms) | median (ms) | min (ms) |
| ---------------------- | --------- | ----------- | -------- |
| w/ Attention (this PR) | 3.75      | 3.68        | 3.22     |
| w/o Attention          | 9.06      | 9.01        | 8.24     |
| ORT (python)           | 4.32      | 2.63        | 2.50     |

### ViTs

All data in millisecond (ms).

| ViTs     | With Attention | Without Attention | ORT    |
| -------- | -------------- | ----------------- | ------ |
| vit_b_16 | 302.77         | 365.35            | 109.70 |
| vit_b_32 | 89.92          | 116.22            | 30.36  |
| vit_l_16 | 1593.32        | 1730.74           | 419.92 |
| vit_l_32 | 468.11         | 577.41            | 134.12 |
| VitTrack | 3.80           | 3.87              | 2.25   |

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-12-20 19:35:07 +03:00
Laurent Berger
3e6dcdc0a4
Merge pull request #24539 from LaurentBerger:blobrecttoimage
Add blobrecttoimage #24539

### Pull Request Readiness Checklist

resolves https://github.com/opencv/opencv/issues/14659

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work #14659
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-12-19 20:00:04 +03:00
Yuantao Feng
fa5ed62a66
Merge pull request #24694 from fengyuentau:matmul_refactor
dnn: refactor ONNX MatMul with fastGemm #24694

Done:
- [x] add backends
    - [x] CUDA
    - [x] OpenVINO
    - [x] CANN
    - [x] OpenCL
    - [x] Vulkan
- [x] add perf tests
- [x] const B case

### Benchmark

Tests are done on M1. All data is in milliseconds (ms).

| Configuration | MatMul (Prepacked) | MatMul | InnerProduct |
| - | - | - | - |
| A=[12, 197, 197], B=[12, 197, 64], trans_a=0, trans_b=0 | **0.39** | 0.41 | 1.33 |
| A=[12, 197, 64], B=[12, 64, 197], trans_a=0, trans_b=0  | **0.42** | 0.42 | 1.17 |
| A=[12, 50, 64], B=[12, 64, 50], trans_a=0, trans_b=0    | **0.13** | 0.15 | 0.33 |
| A=[12, 50, 50], B=[12, 50, 64], trans_a=0, trans_b=0    | **0.11** | 0.13 | 0.22 |
| A=[16, 197, 197], B=[16, 197, 64], trans_a=0, trans_b=0 | **0.46** | 0.54 | 1.46 |
| A=[16, 197, 64], B=[16, 64, 197], trans_a=0, trans_b=0  | **0.46** | 0.95 | 1.74 |
| A=[16, 50, 64], B=[16, 64, 50], trans_a=0, trans_b=0    | **0.18** | 0.32 | 0.43 |
| A=[16, 50, 50], B=[16, 50, 64], trans_a=0, trans_b=0    | **0.15** | 0.25 | 0.25 |

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-12-19 19:36:41 +03:00
Wanli
6ae1709c6a
Merge pull request #24613 from WanliZhong:softmax_default_axis
Make default axis of softmax in onnx "-1" without opset option #24613

Try to solve problem: https://github.com/opencv/opencv/pull/24476#discussion_r1404821158

**ONNX**
`opset <= 11` use 1
`else` use -1

**TensorFlow**
`TF version = 2.x` use -1
`else` use 1

**Darknet, Caffe, Torch**
use 1 by definition
2023-12-15 10:41:42 +03:00
Wanli
9bbc890d96
Merge pull request #24681 from WanliZhong:err_armv8
Fixed armv8 compilation warnings #24681 

Fixes the following warning on  armv8:
```
warning: dereferencing type-punned pointer will break strict-aliasing rules [-Wstrict-aliasing]
```
Buildbot: https://pullrequest.opencv.org/buildbot/builders/4_x_ARMv8-lin
2023-12-12 15:38:07 +03:00
Dmitry Kurtaev
ac4b26a561 Replace Slice optional inputs removal to adjustment 2023-12-08 23:29:52 +03:00
Yuantao Feng
a2edf4d929
Merge pull request #24647 from fengyuentau:cuda_sub
dnn cuda: support Sub #24647

Related https://github.com/opencv/opencv/issues/24606#issuecomment-1837390257

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-12-06 13:46:24 +03:00
Yuantao Feng
f5ec92e4ca
Merge pull request #24655 from fengyuentau:graph_simplifier_optional_input
dnn onnx graph simplifier: handle optional inputs of Slice #24655

Resolves https://github.com/opencv/opencv/issues/24609

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-12-06 13:43:54 +03:00
Alexander Smorkalov
7b1a5fb3de Migrate Android Face Detection sample to DNN. 2023-11-29 11:02:44 +03:00
Abduragim Shtanchaev
5278560252
Merge pull request #24569 from Abdurrahheem:ash/padding_value_fix
Add support for custom padding in DNN preprocessing #24569

This PR add functionality for specifying value in padding.
It is required in many preprocessing pipelines in DNNs such as Yolox object detection model

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-11-28 11:54:09 +03:00
Dmitry Kurtaev
332748dd55
Merge pull request #24577 from dkurt:dnn_graph_match_stack
Fix graph fusion with commutative ops #24577

### Pull Request Readiness Checklist

resolves https://github.com/opencv/opencv/issues/24568

**Merge with extra**: https://github.com/opencv/opencv_extra/pull/1125

TODO:
- [x]  replace recursive function to sequential

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-11-24 10:40:32 +03:00
Yuantao Feng
d05fb709f9
Merge pull request #24552 from fengyuentau:layernorm_backends
dnn: add openvino, opencl and cuda backends for layer normalization layer #24552

Merge after https://github.com/opencv/opencv/pull/24544.

Todo:

- [x] openvino
- [x] opencl
- [x] cuda

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-11-21 15:33:01 +03:00
zihaomu
b913e73d04
DNN: add the Winograd fp16 support (#23654)
* add Winograd FP16 implementation

* fixed dispatching of FP16 code paths in dnn; use dynamic dispatcher only when NEON_FP16 is enabled in the build and the feature is present in the host CPU at runtime

* fixed some warnings

* hopefully fixed winograd on x64 (and maybe other platforms)

---------

Co-authored-by: Vadim Pisarevsky <vadim.pisarevsky@gmail.com>
2023-11-20 13:45:37 +03:00
Yuantao Feng
a478757483
Merge pull request #24544 from fengyuentau:layernorm_conformance
dnn test: move layer norm tests into conformance tests #24544

Merge with https://github.com/opencv/opencv_extra/pull/1122

## Motivation

Some ONNX operators, such as `LayerNormalization`, `BatchNormalization` and so on, produce outputs for training (mean, stdev). So they have reference outputs of conformance tests for those training outputs as well. However, when it comes to inference, we do not need and produce those outputs for training here in dnn. Hence, output size does not match if we use dnn to infer those conformance models. This has become the barrier if we want to test these operators using their conformance tests.

<!--
| Operator                | Inference needed                    | Outputs (required - total) | Optional outputs for training? |
| ----------------------- | ----------------------------------- | -------------------------- | ------------------------------ |
| BatchNormalization      | Yes                                 | 1 - 3                      | Yes                            |
| Dropout                 | Maybe, can be eliminated via fusion | 1 - 2                      | Yes                            |
| GRU                     | Yes                                 | 0 - 2                      | No                             |
| LSTM                    | Yes                                 | 0 - 3                      | No                             |
| LayerNormalization      | Yes                                 | 1 - 3                      | Yes                            |
| MaxPool                 | Yes                                 | 1 - 2                      | Yes                            |
| RNN                     | Yes                                 | 0 - 2                      | No                             |
| SoftmaxCrossEntropyLoss | No                                  | 1 - 2                      | --                             |
-->

**I checked all ONNX operators with optional outputs. Turns out there are only `BatchNormalization`, `Dropout`, `LayerNormalization` and `MaxPool` has optional outputs for training. All except `LayerNormalization` have models set for training mode and eval mode. Blame ONNX for that.**

## Solution

In this pull request, we remove graph outputs if the graph looks like the following:

```
    [X]   [Scale]  [Bias]                      [X]   [Scale]  [Bias]
      \      |      /         this patch         \      |      /
     LayerNormalization      ----------->       LayerNormalization
      /      |      \                                   |
    [Y]    [Mean]  [Stdev]                             [Y]
```

We can update conformance tests and turn on some cases as well if extending to more layers.

Notes:
1. This workaround does not solve expanded function operators if they are fused into a single operator, such as `$onnx/onnx/backend/test/data/node/test_layer_normalization_2d_axis1_expanded`, but they can be run without fusion. Note that either dnn or onnxruntime does not fuse those expanded function operators.

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-11-20 11:19:24 +03:00
Abduragim Shtanchaev
8c10545d3c
Merge pull request #24509 from Abdurrahheem:ash/dev_einsum_fast_gemm
Fast gemm for einsum #24509

## This PR adds performance tests for Einsum Layer with FastGemm. See below results of performance test on different inputs

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-11-16 16:20:17 +03:00
Yuantao Feng
024dfd54af
dnn cann backend: add hardswish, layernorm and instasnce norm for cann and bug fix (#24462)
* add hardswish for cann

* gemm cann bug fix

* fix indentation

* cann: add layer norm

* cann: add instance norm

* add supportBackend

* cann: layer norm does not support axis=-1 due to 1d mat issue

* disable instance norm for now

* fix doc

* remove tensor desc initialization for 1D tensor
2023-11-15 17:57:52 +03:00
Alexander Smorkalov
960a926055
Merge pull request #24510 from asmorkalov:as/softmax_rvv
Enable softmax layer vectorization on RISC-V RVV #24510 

Related: https://github.com/opencv/opencv/pull/24466

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-11-11 09:09:14 +03:00
Dmitry Kurtaev
b7ec2ebb55
Merge pull request #24483 from dkurt:dnn_fusion_commutative_ops
Commutative rules for DNN subgraphs fusion #24483

### Pull Request Readiness Checklist

related: https://github.com/opencv/opencv/pull/24463#issuecomment-1783033931

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-11-08 16:26:33 +03:00
Yuantao Feng
ee0822dc4d
Merge pull request #24378 from fengyuentau:instance_norm
dnn onnx: add instance norm layer #24378

Resolves https://github.com/opencv/opencv/issues/24377
Relates https://github.com/opencv/opencv/pull/24092#discussion_r1349841644

| Perf | multi-thread | single-thread |
| - | - | - |
| x: [2, 64, 180, 240] | 3.95ms | 11.12ms |

Todo:

- [x] speed up by multi-threading
- [x] add perf
- [x] add backend: OpenVINO
- [x] add backend: CUDA
- [x] add backend: OpenCL (no fp16)
- [ ] add backend: CANN (will be done via https://github.com/opencv/opencv/pull/24462)


### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake

```
force_builders=Linux OpenCL,Win64 OpenCL,Custom
buildworker:Custom=linux-4
build_image:Custom=ubuntu:18.04
modules_filter:Custom=none
disable_ipp:Custom=ON
```
2023-11-07 12:59:10 +03:00
Wanli
ed52f7feea
Improve and refactor softmax layer (#24466)
* improve and refactor softmax layer

* fix building error

* compatible region layer

* fix axisStep when disable SIMD

* fix dynamic array

* try to fix error

* use nlanes from VTraits

* move axisBias to srcOffset

* fix bug caused by axisBias

* remove macro

* replace #ifdef with #if for CV_SIMD
2023-11-06 04:48:32 +03:00