Commit Graph

22 Commits

Author SHA1 Message Date
Alexander Alekhin
efc9837df1
Merge pull request #24892 from opencv-pushbot:gitee/alalek/dnn_avoid_16s_usage
DNN: avoid CV_16S usage for FP16 #24892

**Merge after**: #24918

TODO:
- [x] measure performance changes
- [x] optimize convertTo for OpenCL: #24918

12700K iGPU:

|Name of Test|0|1|1 vs 0 (x-factor)|
|---|:-:|:-:|:-:|
|AlexNet::DNNTestNetwork::OCV/OCL_FP16|7.441|7.480|0.99|
|CRNN::DNNTestNetwork::OCV/OCL_FP16|10.776|10.736|1.00|
|DenseNet_121::DNNTestNetwork::OCV/OCL_FP16|52.762|52.833|1.00|
|EAST_text_detection::DNNTestNetwork::OCV/OCL_FP16|60.694|60.721|1.00|
|EfficientNet::DNNTestNetwork::OCV/OCL_FP16|33.373|33.173|1.01|
|FastNeuralStyle_eccv16::DNNTestNetwork::OCV/OCL_FP16|81.840|81.724|1.00|
|GoogLeNet::DNNTestNetwork::OCV/OCL_FP16|20.965|20.927|1.00|
|Inception_5h::DNNTestNetwork::OCV/OCL_FP16|22.204|22.173|1.00|
|Inception_v2_SSD_TensorFlow::DNNTestNetwork::OCV/OCL_FP16|47.115|47.460|0.99|
|MPHand::DNNTestNetwork::OCV/OCL_FP16|6.760|6.670|1.01|
|MPPalm::DNNTestNetwork::OCV/OCL_FP16|10.188|10.171|1.00|
|MPPose::DNNTestNetwork::OCV/OCL_FP16|12.510|12.561|1.00|
|MobileNet_SSD_Caffe::DNNTestNetwork::OCV/OCL_FP16|17.290|17.072|1.01|
|MobileNet_SSD_v1_TensorFlow::DNNTestNetwork::OCV/OCL_FP16|19.473|19.306|1.01|
|MobileNet_SSD_v2_TensorFlow::DNNTestNetwork::OCV/OCL_FP16|22.874|23.404|0.98|
|OpenFace::DNNTestNetwork::OCV/OCL_FP16|9.568|9.517|1.01|
|OpenPose_pose_mpi_faster_4_stages::DNNTestNetwork::OCV/OCL_FP16|539.899|539.845|1.00|
|PPHumanSeg::DNNTestNetwork::OCV/OCL_FP16|18.015|18.769|0.96|
|PPOCRv3::DNNTestNetwork::OCV/OCL_FP16|63.122|63.540|0.99|
|ResNet_50::DNNTestNetwork::OCV/OCL_FP16|34.947|34.925|1.00|
|SFace::DNNTestNetwork::OCV/OCL_FP16|10.249|10.206|1.00|
|SSD::DNNTestNetwork::OCV/OCL_FP16|213.068|213.108|1.00|
|SqueezeNet_v1_1::DNNTestNetwork::OCV/OCL_FP16|4.867|4.878|1.00|
|VIT_B_32::DNNTestNetwork::OCV/OCL_FP16|200.563|190.788|1.05|
|VitTrack::DNNTestNetwork::OCV/OCL_FP16|7.528|7.173|1.05|
|YOLOX::DNNTestNetwork::OCV/OCL_FP16|132.858|132.701|1.00|
|YOLOv3::DNNTestNetwork::OCV/OCL_FP16|209.559|208.809|1.00|
|YOLOv4::DNNTestNetwork::OCV/OCL_FP16|221.357|220.924|1.00|
|YOLOv4_tiny::DNNTestNetwork::OCV/OCL_FP16|24.446|24.382|1.00|
|YOLOv5::DNNTestNetwork::OCV/OCL_FP16|43.922|44.080|1.00|
|YOLOv8::DNNTestNetwork::OCV/OCL_FP16|64.159|63.842|1.00|
|YuNet::DNNTestNetwork::OCV/OCL_FP16|10.177|10.231|0.99|
|opencv_face_detector::DNNTestNetwork::OCV/OCL_FP16|15.121|15.445|0.98|

Co-authored-by: Alexander Alekhin <alexander.a.alekhin@gmail.com>
2024-01-26 16:34:17 +03:00
llh721113
a30c987f87 feat: RVP052 Optimization for DNN int8layers 2023-12-21 14:51:41 +08:00
Liutong HAN
a287605c3e Clean up the Universal Intrinsic API. 2023-10-13 19:23:30 +08:00
HAN Liutong
07bf9cb013
Merge pull request #24325 from hanliutong:rewrite
Rewrite Universal Intrinsic code: float related part #24325

The goal of this series of PRs is to modify the SIMD code blocks guarded by CV_SIMD macro: rewrite them by using the new Universal Intrinsic API.

The series of PRs is listed below:
#23885 First patch, an example
#23980 Core module
#24058 ImgProc module, part 1
#24132 ImgProc module, part 2
#24166 ImgProc module, part 3
#24301 Features2d and calib3d module
#24324 Gapi module

This patch (hopefully) is the last one in the series. 

This patch mainly involves 3 parts
1. Add some modifications related to float (CV_SIMD_64F)
2. Use `#if (CV_SIMD || CV_SIMD_SCALABLE)` instead of `#if CV_SIMD || CV_SIMD_SCALABLE`, 
    then we can get the `CV_SIMD` module that is not enabled for `CV_SIMD_SCALABLE` by looking for `if CV_SIMD`
3. Summary of `CV_SIMD` blocks that remains unmodified: Updated comments
    - Some blocks will cause test fail when enable for RVV, marked as `TODO: enable for CV_SIMD_SCALABLE, ....`
    - Some blocks can not be rewrited directly. (Not commented in the source code, just listed here)
      - ./modules/core/src/mathfuncs_core.simd.hpp (Vector type wrapped in class/struct)
      - ./modules/imgproc/src/color_lab.cpp (Array of vector type)
      - ./modules/imgproc/src/color_rgb.simd.hpp (Array of vector type)
      - ./modules/imgproc/src/sumpixels.simd.hpp (fixed length algorithm, strongly ralated with `CV_SIMD_WIDTH`)
      These algorithms will need to be redesigned to accommodate scalable backends.

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [ ] I agree to contribute to the project under Apache 2 License.
- [ ] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ ] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-10-05 17:57:25 +03:00
Dmitry Kurtaev
c7ec0d599a
Merge pull request #23987 from dkurt:openvino_int8_backend
OpenVINO backend for INT8 models #23987

### Pull Request Readiness Checklist

TODO:
- [x] DetectionOutput layer (https://github.com/opencv/opencv/pull/24069)
- [x] Less FP32 fallbacks (i.e. Sigmoid, eltwise sum)
- [x] Accuracy, performance tests (https://github.com/opencv/opencv/pull/24039)
- [x] Single layer tests (convolution)
- [x] ~~Fixes for OpenVINO 2022.1 (https://pullrequest.opencv.org/buildbot/builders/precommit_custom_linux/builds/100334)~~


Performace results for object detection model `coco_efficientdet_lite0_v1_1.0_quant_2021_09_06.tflite`:
| backend | performance (median time) |
|---|---|
| OpenCV | 77.42ms |
| OpenVINO 2023.0 | 10.90ms |

CPU: `11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz`

Serialized model per-layer stats (note that Convolution should use `*_I8` primitives if they are quantized correctly): https://gist.github.com/dkurt/7772bbf1907035441bb5454f19f0feef

---

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-09-28 16:24:43 +03:00
Yuantao Feng
f07b01cc34
Merge pull request #23655 from fengyuentau:qlinearsoftmax
Support ONNX operator QLinearSoftmax in dnn #23655

Resolves https://github.com/opencv/opencv/issues/23636.
Merge with https://github.com/opencv/opencv_extra/pull/1064.

This PR maps the QLinearSoftmax (from com.microsoft domain) to SoftmaxInt8 in dnn along with some speed optimization.

Todo:
- [x] support QLinearSoftmax with opset = 13
- [x] add model and test data for QLinearSoftmax with opset = 13
- [x] ensure all models have dims >= 3.
- [x] add the script to generate model and test data 

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-05-25 13:35:58 +03:00
Zihao Mu
5025f29378
speed up vulkan dnn, and support ios and apple m1 chip. (#23349) 2023-05-18 20:02:27 +03:00
Yuantao Feng
eefee8574a
dnn: refactor reduce (#23613)
* initial impl

* remove reduce in8; fix reduce importer

* fix bugs and add log sum exp

* remove unnecessary header and fix indentation
2023-05-17 10:03:45 +03:00
Zihao Mu
903bf0147e
Merge pull request #22666 from zihaomu:support_onnx_qdq_model
DNN: let Quant and Dequant of ONNX_importer support the Constant input.

* let Quant and Dequant support the Constant input.

* fix negative value of axis.
2022-10-31 16:06:31 +00:00
Alexander Smorkalov
02143cd0e2
Merge pull request #22531 from zihaomu:stop_rely_name
Parsing quantized nodes does not rely on names
2022-10-17 11:20:24 +03:00
Zihao Mu
d9eff7daeb parse quantized nodes does not rely on name. 2022-10-10 17:08:46 +08:00
Zihao Mu
1e2ceca4df add enableWinograd API for Net. 2022-10-09 09:33:07 +08:00
wxsheng
4154bd0667
Add Loongson Advanced SIMD Extension support: -DCPU_BASELINE=LASX
* Add Loongson Advanced SIMD Extension support: -DCPU_BASELINE=LASX
* Add resize.lasx.cpp for Loongson SIMD acceleration
* Add imgwarp.lasx.cpp for Loongson SIMD acceleration
* Add LASX acceleration support for dnn/conv
* Add CV_PAUSE(v) for Loongarch
* Set LASX by default on Loongarch64
* LoongArch: tune test threshold for Core/HAL.mat_decomp/15

Co-authored-by: shengwenxue <shengwenxue@loongson.cn>
2022-09-10 09:39:43 +03:00
Zihao Mu
d4640f4647 support ReduceLayer without reshape layer. 2022-08-02 10:32:31 +08:00
Zihao Mu
a80fcacd90
Merge pull request #21372 from zihaomu:dnn_quantize_per_tensor
Add per_tensor_quantize to int8 quantize

* add per_tensor_quantize to dnn int8 module.

* change api flag from perTensor to perChannel, and recognize quantize type and onnx importer.

* change the default to hpp
2022-07-05 19:14:42 +03:00
Zihao Mu
7b582b71ba
Merge pull request #21036 from fengyuentau:timvx_backend_support
dnn: TIM-VX NPU backend support

* Add TimVX NPU backend for DNN module.

* use official branch from tim-vx repo; fix detecting viv sdk

Co-authored-by: fytao <yuantao.feng@outlook.com>
2022-03-31 21:42:11 +00:00
Zihao Mu
b6b5c27cec Support for some reduce layers for onnx 2022-03-18 10:19:13 +08:00
Maksim Shabunin
a079c2eb7c Fixed several issues found by static analysis 2021-12-16 19:21:25 +03:00
Alexander Alekhin
1926e919be dnn(int8): fix using of incorrect UMat constructor 2021-10-18 04:46:00 +00:00
Jebastin Nadar
cce78cc5e2
Merge pull request #20535 from SamFC10:onnx-q
dnn : int8 quantized layers support in onnx importer

* added quantized layers support in onnx importer

* added more cases in eltwise node, some more checks

* added tests for quantized nodes

* relax thresholds for failed tests, address review comments

* refactoring based on review comments

* added support for unsupported cases and pre-quantized resnet50 test

* relax thresholds due to int8 resize layer
2021-10-04 18:07:38 +00:00
SamFC10
87ebf2e50b fix illegal memory access in int8 convolution 2021-10-03 15:16:01 +05:30
SamFC10
fa90e14b06 int8 layers and 8-bit quantization support 2021-08-19 09:56:47 +05:30