Implement color conversion from RGB to YUV422 family #24333
Related PR for extra: https://github.com/opencv/opencv_extra/pull/1104
Hi,
This patch provides CPU and OpenCL implementations of color conversions from RGB/BGR to YUV422 family (such as UYVY and YUY2).
These features would come in useful for enabling standard RGB images to be supplied as input to algorithms or networks that make use of images in YUV422 format directly (for example, on resource constrained devices working with camera images captured in YUV422).
The code, tests and perf tests are all written following the existing pattern. There is also an example `bin/example_cpp_cvtColor_RGB2YUV422` that loads an image from disk, converts it from BGR to UYVY and then back to BGR, and displays the result as a visual check that the conversion works.
The OpenCL performance for the forward conversion implemented here is the same as the existing backward conversion on my hardware. The CPU implementation, unfortunately, isn't very optimized as I am not yet familiar with the SIMD code.
Please let me know if I need to fix something or can make other modifications.
Thanks!
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
- [x] The feature is well documented and sample code can be built with the project CMake
* attempt to add 0d/1d mat support to OpenCV
* revised the patch; now 1D mat is treated as 1xN 2D mat rather than Nx1.
* a step towards 'green' tests
* another little step towards 'green' tests
* calib test failures seem to be fixed now
* more fixes _core & _dnn
* another step towards green ci; even 0D mat's (a.k.a. scalars) are now partly supported!
* * fixed strange bug in aruco/charuco detector, not sure why it did not work
* also fixed a few remaining failures (hopefully) in dnn & core
* disabled failing GAPI tests - too complex to dig into this compiler pipeline
* hopefully fixed java tests
* trying to fix some more tests
* quick followup fix
* continue to fix test failures and warnings
* quick followup fix
* trying to fix some more tests
* partly fixed support for 0D/scalar UMat's
* use updated parseReduce() from upstream
* trying to fix the remaining test failures
* fixed [ch]aruco tests in Python
* still trying to fix tests
* revert "fix" in dnn's CUDA tensor
* trying to fix dnn+CUDA test failures
* fixed 1D umat creation
* hopefully fixed remaining cuda test failures
* removed training whitespaces
Fix distanceTransform for inputs with large step and height #24214
### Pull Request Readiness Checklist
resolves https://github.com/opencv/opencv/issues/23895
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
* started working on adding 32u, 64u, 64s, bool and 16bf types to OpenCV
* core & imgproc tests seem to pass
* fixed a few compile errors and test failures on macOS x86
* hopefully fixed some compile problems and test failures
* fixed some more warnings and test failures
* trying to fix small deviations in perf_core & perf_imgproc by revering randf_64f to exact version used before
* trying to fix behavior of the new OpenCV with old plugins; there is (quite strong) assumption that video capture would give us frames with depth == CV_8U (0) or CV_16U (2). If depth is > 7 then it means that the plugin is built with the old OpenCV. It needs to be recompiled, of course and then this hack can be removed.
* try to repair the case when target arch does not have FP64 SIMD
* 1. fixed bug in itoa() found by alalek
2. restored ==, !=, > and < univ. intrinsics on ARM32/ARM64.
Fix harmless ASAN error. #24042
For an empty radius, &v[0] would be accessed (though the called functions would not use it due to v.size() being 0). Also add checks for emptyness and fix the first element checks, in case we get INT_MAX to compare to.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
C++20 made it invalid to use simple-template-ids for constructors and destructors: https://eel.is/c++draft/diff.cpp17.class#2
GCC 11 and later throw an error on this, with the unhelpful message `expected unqualified-id before ')' token`. This PR fixes the problem.
Fix imgwarp at borders when transparent. #23922
I believe this is a proper fix to #23562
The PR #23754 overwrites data while that should not be the case with transparent data. The original test is failing because points at the border do not get computed because they do not have 4 neighbors to be computed. Still ,we can approximate their computation with whatever neighbors that are available.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Fix distransform to work with large images #22798
This attempts to fix the following bug which was caused by storing squares of large integers into 32-bit floating point variables:
https://github.com/opencv/opencv/issues/22732
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Keep inliers for linear remap with BORDER_TRANSPARENT #23754
Address https://github.com/opencv/opencv/issues/23562
### Pull Request Readiness Checklist
resolves https://github.com/opencv/opencv/issues/23562
I do think that this is a bug because with `INTER_CUBIC + BORDER_TRANSPARENT` the last column and row are preserved. So same should be done for `INTER_LINEAR`
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
imgproc: add contour values check to IntelligentScissorsMB tests
Preparation for the #21959 changes as per @asmorkalov's https://github.com/opencv/opencv/pull/21959#issuecomment-1560511500 suggestion.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [X] I agree to contribute to the project under Apache 2 License.
- [X] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [X] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [X] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
better accuracy for _rotatedRectangleIntersection() (proposal for #23546) #23690
_rotatedRectangleIntersection() can be (statically) customized to use double instead of float for better accuracy
this is a proposal for experimentation around #23546
for better accuracy, _rotatedRectangleIntersection() could use double. It will still return cv::Point2f list for backward compatibility, but the inner computations are controlled by a typedef
- [X] I agree to contribute to the project under Apache 2 License.
- [X] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [X] The PR is proposed to the proper branch
- [X] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Fix even input dimensions for INTER_NEAREST_EXACT #23634
### Pull Request Readiness Checklist
resolves https://github.com/opencv/opencv/issues/22204
related: https://github.com/opencv/opencv/issues/9096#issuecomment-1551306017
/cc @Yosshi999
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Usage of imread(): magic number 0, unchecked result
* docs: rewrite 0/1 to IMREAD_GRAYSCALE/IMREAD_COLOR in imread()
* samples, apps: rewrite 0/1 to IMREAD_GRAYSCALE/IMREAD_COLOR in imread()
* tests: rewrite 0/1 to IMREAD_GRAYSCALE/IMREAD_COLOR in imread()
* doc/py_tutorials: check imread() result
In some situations the last value was missing from the discrete theta
values. Now, the last value is chosen such that it is close to the
user-provided maximum theta, while the distance to pi remains always
at least theta_step/2. This should avoid duplicate detections.
A better way would probably be to use max_theta as is and adjust the
resolution (theta_step) instead, such that the discretization would
always be uniform (in a circular sense) when full angle range is used.
Replaced sprintf with safer snprintf
* Straightforward replacement of sprintf with safer snprintf
* Trickier replacement of sprintf with safer snprintf
Some functions were changed to take another parameter: the size of the buffer, so that they can pass that size on to snprintf.
Fixed out-of-bounds read in parallel version of ippGaussianBlur()
* Fixed out-of-memory read in parallel version of ippGaussianBlur()
* Fixed check
* Revert changes in CMakeLists.txt
* better accuracy of _rotatedRectangleIntersection
instead of just migrating to double-precision (which would work), some computations are scaled by a factor that depends on the length of the smallest vectors.
There is a better accuracy even with floats, so this is certainly better for very sensitive cases
* Update intersection.cpp
use L2SQR norm to tune the numeric scale
* Update intersection.cpp
adapt samePointEps with L2 norm
* Update intersection.cpp
move comment
* Update intersection.cpp
fix wrong numericalScalingFactor usage
* added tests
* fixed warnings returned by buildbot
* modifications suggested by reviewer
renaming numericalScaleFctor to normalizationScale
refactor some computations
more "const"
* modifications as suggested by reviewer
Fixed threshold(THRESH_TOZERO) at imgproc(IPP)
* Fixed#16085: imgproc(IPP): wrong result from threshold(THRESH_TOZERO)
* 1. Added test cases with float where all bits of mantissa equal 1, min and max float as inputs
2. Used nextafterf instead of cast to hex
* Used float value in test instead of hex and casts
* Changed input value in test
* Fix integer overflow in cv::Luv2RGBinteger::process.
For LL=49, uu=205, vv=23, we end up with x=7373056 and y=458
which overflows y*x.
* imgproc(test): adjust test parameters to cover SIMD code
different paddings in cvtColorTwoPlane() for biplane YUV420
* Different paddings support in cvtColorTwoPlane() for biplane YUV420
* Build fix for dispatch case.
* Resoted old behaviour for y.step==uv.step to exclude perf regressions.
Co-authored-by: amir.tulegenov <amir.tulegenov@xperience.ai>
Co-authored-by: Alexander Smorkalov <alexander.smorkalov@xperience.ai>