/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #ifndef OPENCV_OLD_ML_HPP #define OPENCV_OLD_ML_HPP #ifdef __cplusplus # include "opencv2/core.hpp" #endif #include "opencv2/core/core_c.h" #include #ifdef __cplusplus #include #include // Apple defines a check() macro somewhere in the debug headers // that interferes with a method definition in this header #undef check /****************************************************************************************\ * Main struct definitions * \****************************************************************************************/ /* log(2*PI) */ #define CV_LOG2PI (1.8378770664093454835606594728112) /* columns of matrix are training samples */ #define CV_COL_SAMPLE 0 /* rows of matrix are training samples */ #define CV_ROW_SAMPLE 1 #define CV_IS_ROW_SAMPLE(flags) ((flags) & CV_ROW_SAMPLE) struct CvVectors { int type; int dims, count; CvVectors* next; union { uchar** ptr; float** fl; double** db; } data; }; #if 0 /* A structure, representing the lattice range of statmodel parameters. It is used for optimizing statmodel parameters by cross-validation method. The lattice is logarithmic, so must be greater than 1. */ typedef struct CvParamLattice { double min_val; double max_val; double step; } CvParamLattice; CV_INLINE CvParamLattice cvParamLattice( double min_val, double max_val, double log_step ) { CvParamLattice pl; pl.min_val = MIN( min_val, max_val ); pl.max_val = MAX( min_val, max_val ); pl.step = MAX( log_step, 1. ); return pl; } CV_INLINE CvParamLattice cvDefaultParamLattice( void ) { CvParamLattice pl = {0,0,0}; return pl; } #endif /* Variable type */ #define CV_VAR_NUMERICAL 0 #define CV_VAR_ORDERED 0 #define CV_VAR_CATEGORICAL 1 #define CV_TYPE_NAME_ML_SVM "opencv-ml-svm" #define CV_TYPE_NAME_ML_KNN "opencv-ml-knn" #define CV_TYPE_NAME_ML_NBAYES "opencv-ml-bayesian" #define CV_TYPE_NAME_ML_BOOSTING "opencv-ml-boost-tree" #define CV_TYPE_NAME_ML_TREE "opencv-ml-tree" #define CV_TYPE_NAME_ML_ANN_MLP "opencv-ml-ann-mlp" #define CV_TYPE_NAME_ML_CNN "opencv-ml-cnn" #define CV_TYPE_NAME_ML_RTREES "opencv-ml-random-trees" #define CV_TYPE_NAME_ML_ERTREES "opencv-ml-extremely-randomized-trees" #define CV_TYPE_NAME_ML_GBT "opencv-ml-gradient-boosting-trees" #define CV_TRAIN_ERROR 0 #define CV_TEST_ERROR 1 class CvStatModel { public: CvStatModel(); virtual ~CvStatModel(); virtual void clear(); CV_WRAP virtual void save( const char* filename, const char* name=0 ) const; CV_WRAP virtual void load( const char* filename, const char* name=0 ); virtual void write( cv::FileStorage& storage, const char* name ) const; virtual void read( const cv::FileNode& node ); protected: const char* default_model_name; }; /****************************************************************************************\ * Normal Bayes Classifier * \****************************************************************************************/ /* The structure, representing the grid range of statmodel parameters. It is used for optimizing statmodel accuracy by varying model parameters, the accuracy estimate being computed by cross-validation. The grid is logarithmic, so must be greater than 1. */ class CvMLData; struct CvParamGrid { // SVM params type enum { SVM_C=0, SVM_GAMMA=1, SVM_P=2, SVM_NU=3, SVM_COEF=4, SVM_DEGREE=5 }; CvParamGrid() { min_val = max_val = step = 0; } CvParamGrid( double min_val, double max_val, double log_step ); //CvParamGrid( int param_id ); bool check() const; CV_PROP_RW double min_val; CV_PROP_RW double max_val; CV_PROP_RW double step; }; inline CvParamGrid::CvParamGrid( double _min_val, double _max_val, double _log_step ) { min_val = _min_val; max_val = _max_val; step = _log_step; } class CvNormalBayesClassifier : public CvStatModel { public: CV_WRAP CvNormalBayesClassifier(); virtual ~CvNormalBayesClassifier(); CvNormalBayesClassifier( const CvMat* trainData, const CvMat* responses, const CvMat* varIdx=0, const CvMat* sampleIdx=0 ); virtual bool train( const CvMat* trainData, const CvMat* responses, const CvMat* varIdx = 0, const CvMat* sampleIdx=0, bool update=false ); virtual float predict( const CvMat* samples, CV_OUT CvMat* results=0, CV_OUT CvMat* results_prob=0 ) const; CV_WRAP virtual void clear(); CV_WRAP CvNormalBayesClassifier( const cv::Mat& trainData, const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(), const cv::Mat& sampleIdx=cv::Mat() ); CV_WRAP virtual bool train( const cv::Mat& trainData, const cv::Mat& responses, const cv::Mat& varIdx = cv::Mat(), const cv::Mat& sampleIdx=cv::Mat(), bool update=false ); CV_WRAP virtual float predict( const cv::Mat& samples, CV_OUT cv::Mat* results=0, CV_OUT cv::Mat* results_prob=0 ) const; virtual void write( cv::FileStorage& storage, const char* name ) const; virtual void read( const cv::FileNode& node ); protected: int var_count, var_all; CvMat* var_idx; CvMat* cls_labels; CvMat** count; CvMat** sum; CvMat** productsum; CvMat** avg; CvMat** inv_eigen_values; CvMat** cov_rotate_mats; CvMat* c; }; /****************************************************************************************\ * K-Nearest Neighbour Classifier * \****************************************************************************************/ // k Nearest Neighbors class CvKNearest : public CvStatModel { public: CV_WRAP CvKNearest(); virtual ~CvKNearest(); CvKNearest( const CvMat* trainData, const CvMat* responses, const CvMat* sampleIdx=0, bool isRegression=false, int max_k=32 ); virtual bool train( const CvMat* trainData, const CvMat* responses, const CvMat* sampleIdx=0, bool is_regression=false, int maxK=32, bool updateBase=false ); virtual float find_nearest( const CvMat* samples, int k, CV_OUT CvMat* results=0, const float** neighbors=0, CV_OUT CvMat* neighborResponses=0, CV_OUT CvMat* dist=0 ) const; CV_WRAP CvKNearest( const cv::Mat& trainData, const cv::Mat& responses, const cv::Mat& sampleIdx=cv::Mat(), bool isRegression=false, int max_k=32 ); CV_WRAP virtual bool train( const cv::Mat& trainData, const cv::Mat& responses, const cv::Mat& sampleIdx=cv::Mat(), bool isRegression=false, int maxK=32, bool updateBase=false ); virtual float find_nearest( const cv::Mat& samples, int k, cv::Mat* results=0, const float** neighbors=0, cv::Mat* neighborResponses=0, cv::Mat* dist=0 ) const; CV_WRAP virtual float find_nearest( const cv::Mat& samples, int k, CV_OUT cv::Mat& results, CV_OUT cv::Mat& neighborResponses, CV_OUT cv::Mat& dists) const; virtual void clear(); int get_max_k() const; int get_var_count() const; int get_sample_count() const; bool is_regression() const; virtual float write_results( int k, int k1, int start, int end, const float* neighbor_responses, const float* dist, CvMat* _results, CvMat* _neighbor_responses, CvMat* _dist, Cv32suf* sort_buf ) const; virtual void find_neighbors_direct( const CvMat* _samples, int k, int start, int end, float* neighbor_responses, const float** neighbors, float* dist ) const; protected: int max_k, var_count; int total; bool regression; CvVectors* samples; }; /****************************************************************************************\ * Support Vector Machines * \****************************************************************************************/ // SVM training parameters struct CvSVMParams { CvSVMParams(); CvSVMParams( int svm_type, int kernel_type, double degree, double gamma, double coef0, double Cvalue, double nu, double p, CvMat* class_weights, CvTermCriteria term_crit ); CV_PROP_RW int svm_type; CV_PROP_RW int kernel_type; CV_PROP_RW double degree; // for poly CV_PROP_RW double gamma; // for poly/rbf/sigmoid/chi2 CV_PROP_RW double coef0; // for poly/sigmoid CV_PROP_RW double C; // for CV_SVM_C_SVC, CV_SVM_EPS_SVR and CV_SVM_NU_SVR CV_PROP_RW double nu; // for CV_SVM_NU_SVC, CV_SVM_ONE_CLASS, and CV_SVM_NU_SVR CV_PROP_RW double p; // for CV_SVM_EPS_SVR CvMat* class_weights; // for CV_SVM_C_SVC CV_PROP_RW CvTermCriteria term_crit; // termination criteria }; struct CvSVMKernel { typedef void (CvSVMKernel::*Calc)( int vec_count, int vec_size, const float** vecs, const float* another, float* results ); CvSVMKernel(); CvSVMKernel( const CvSVMParams* params, Calc _calc_func ); virtual bool create( const CvSVMParams* params, Calc _calc_func ); virtual ~CvSVMKernel(); virtual void clear(); virtual void calc( int vcount, int n, const float** vecs, const float* another, float* results ); const CvSVMParams* params; Calc calc_func; virtual void calc_non_rbf_base( int vec_count, int vec_size, const float** vecs, const float* another, float* results, double alpha, double beta ); virtual void calc_intersec( int vcount, int var_count, const float** vecs, const float* another, float* results ); virtual void calc_chi2( int vec_count, int vec_size, const float** vecs, const float* another, float* results ); virtual void calc_linear( int vec_count, int vec_size, const float** vecs, const float* another, float* results ); virtual void calc_rbf( int vec_count, int vec_size, const float** vecs, const float* another, float* results ); virtual void calc_poly( int vec_count, int vec_size, const float** vecs, const float* another, float* results ); virtual void calc_sigmoid( int vec_count, int vec_size, const float** vecs, const float* another, float* results ); }; struct CvSVMKernelRow { CvSVMKernelRow* prev; CvSVMKernelRow* next; float* data; }; struct CvSVMSolutionInfo { double obj; double rho; double upper_bound_p; double upper_bound_n; double r; // for Solver_NU }; class CvSVMSolver { public: typedef bool (CvSVMSolver::*SelectWorkingSet)( int& i, int& j ); typedef float* (CvSVMSolver::*GetRow)( int i, float* row, float* dst, bool existed ); typedef void (CvSVMSolver::*CalcRho)( double& rho, double& r ); CvSVMSolver(); CvSVMSolver( int count, int var_count, const float** samples, schar* y, int alpha_count, double* alpha, double Cp, double Cn, CvMemStorage* storage, CvSVMKernel* kernel, GetRow get_row, SelectWorkingSet select_working_set, CalcRho calc_rho ); virtual bool create( int count, int var_count, const float** samples, schar* y, int alpha_count, double* alpha, double Cp, double Cn, CvMemStorage* storage, CvSVMKernel* kernel, GetRow get_row, SelectWorkingSet select_working_set, CalcRho calc_rho ); virtual ~CvSVMSolver(); virtual void clear(); virtual bool solve_generic( CvSVMSolutionInfo& si ); virtual bool solve_c_svc( int count, int var_count, const float** samples, schar* y, double Cp, double Cn, CvMemStorage* storage, CvSVMKernel* kernel, double* alpha, CvSVMSolutionInfo& si ); virtual bool solve_nu_svc( int count, int var_count, const float** samples, schar* y, CvMemStorage* storage, CvSVMKernel* kernel, double* alpha, CvSVMSolutionInfo& si ); virtual bool solve_one_class( int count, int var_count, const float** samples, CvMemStorage* storage, CvSVMKernel* kernel, double* alpha, CvSVMSolutionInfo& si ); virtual bool solve_eps_svr( int count, int var_count, const float** samples, const float* y, CvMemStorage* storage, CvSVMKernel* kernel, double* alpha, CvSVMSolutionInfo& si ); virtual bool solve_nu_svr( int count, int var_count, const float** samples, const float* y, CvMemStorage* storage, CvSVMKernel* kernel, double* alpha, CvSVMSolutionInfo& si ); virtual float* get_row_base( int i, bool* _existed ); virtual float* get_row( int i, float* dst ); int sample_count; int var_count; int cache_size; int cache_line_size; const float** samples; const CvSVMParams* params; CvMemStorage* storage; CvSVMKernelRow lru_list; CvSVMKernelRow* rows; int alpha_count; double* G; double* alpha; // -1 - lower bound, 0 - free, 1 - upper bound schar* alpha_status; schar* y; double* b; float* buf[2]; double eps; int max_iter; double C[2]; // C[0] == Cn, C[1] == Cp CvSVMKernel* kernel; SelectWorkingSet select_working_set_func; CalcRho calc_rho_func; GetRow get_row_func; virtual bool select_working_set( int& i, int& j ); virtual bool select_working_set_nu_svm( int& i, int& j ); virtual void calc_rho( double& rho, double& r ); virtual void calc_rho_nu_svm( double& rho, double& r ); virtual float* get_row_svc( int i, float* row, float* dst, bool existed ); virtual float* get_row_one_class( int i, float* row, float* dst, bool existed ); virtual float* get_row_svr( int i, float* row, float* dst, bool existed ); }; struct CvSVMDecisionFunc { double rho; int sv_count; double* alpha; int* sv_index; }; // SVM model class CvSVM : public CvStatModel { public: // SVM type enum { C_SVC=100, NU_SVC=101, ONE_CLASS=102, EPS_SVR=103, NU_SVR=104 }; // SVM kernel type enum { LINEAR=0, POLY=1, RBF=2, SIGMOID=3, CHI2=4, INTER=5 }; // SVM params type enum { C=0, GAMMA=1, P=2, NU=3, COEF=4, DEGREE=5 }; CV_WRAP CvSVM(); virtual ~CvSVM(); CvSVM( const CvMat* trainData, const CvMat* responses, const CvMat* varIdx=0, const CvMat* sampleIdx=0, CvSVMParams params=CvSVMParams() ); virtual bool train( const CvMat* trainData, const CvMat* responses, const CvMat* varIdx=0, const CvMat* sampleIdx=0, CvSVMParams params=CvSVMParams() ); virtual bool train_auto( const CvMat* trainData, const CvMat* responses, const CvMat* varIdx, const CvMat* sampleIdx, CvSVMParams params, int kfold = 10, CvParamGrid Cgrid = get_default_grid(CvSVM::C), CvParamGrid gammaGrid = get_default_grid(CvSVM::GAMMA), CvParamGrid pGrid = get_default_grid(CvSVM::P), CvParamGrid nuGrid = get_default_grid(CvSVM::NU), CvParamGrid coeffGrid = get_default_grid(CvSVM::COEF), CvParamGrid degreeGrid = get_default_grid(CvSVM::DEGREE), bool balanced=false ); virtual float predict( const CvMat* sample, bool returnDFVal=false ) const; virtual float predict( const CvMat* samples, CV_OUT CvMat* results, bool returnDFVal=false ) const; CV_WRAP CvSVM( const cv::Mat& trainData, const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(), const cv::Mat& sampleIdx=cv::Mat(), CvSVMParams params=CvSVMParams() ); CV_WRAP virtual bool train( const cv::Mat& trainData, const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(), const cv::Mat& sampleIdx=cv::Mat(), CvSVMParams params=CvSVMParams() ); CV_WRAP virtual bool train_auto( const cv::Mat& trainData, const cv::Mat& responses, const cv::Mat& varIdx, const cv::Mat& sampleIdx, CvSVMParams params, int k_fold = 10, CvParamGrid Cgrid = CvSVM::get_default_grid(CvSVM::C), CvParamGrid gammaGrid = CvSVM::get_default_grid(CvSVM::GAMMA), CvParamGrid pGrid = CvSVM::get_default_grid(CvSVM::P), CvParamGrid nuGrid = CvSVM::get_default_grid(CvSVM::NU), CvParamGrid coeffGrid = CvSVM::get_default_grid(CvSVM::COEF), CvParamGrid degreeGrid = CvSVM::get_default_grid(CvSVM::DEGREE), bool balanced=false); CV_WRAP virtual float predict( const cv::Mat& sample, bool returnDFVal=false ) const; CV_WRAP_AS(predict_all) virtual void predict( cv::InputArray samples, cv::OutputArray results ) const; CV_WRAP virtual int get_support_vector_count() const; virtual const float* get_support_vector(int i) const; virtual CvSVMParams get_params() const { return params; } CV_WRAP virtual void clear(); virtual const CvSVMDecisionFunc* get_decision_function() const { return decision_func; } static CvParamGrid get_default_grid( int param_id ); virtual void write( cv::FileStorage& storage, const char* name ) const; virtual void read( const cv::FileNode& node ); CV_WRAP int get_var_count() const { return var_idx ? var_idx->cols : var_all; } protected: virtual bool set_params( const CvSVMParams& params ); virtual bool train1( int sample_count, int var_count, const float** samples, const void* responses, double Cp, double Cn, CvMemStorage* _storage, double* alpha, double& rho ); virtual bool do_train( int svm_type, int sample_count, int var_count, const float** samples, const CvMat* responses, CvMemStorage* _storage, double* alpha ); virtual void create_kernel(); virtual void create_solver(); virtual float predict( const float* row_sample, int row_len, bool returnDFVal=false ) const; virtual void write_params( cv::FileStorage& fs ) const; virtual void read_params( const cv::FileNode& node ); void optimize_linear_svm(); CvSVMParams params; CvMat* class_labels; int var_all; float** sv; int sv_total; CvMat* var_idx; CvMat* class_weights; CvSVMDecisionFunc* decision_func; CvMemStorage* storage; CvSVMSolver* solver; CvSVMKernel* kernel; private: CvSVM(const CvSVM&); CvSVM& operator = (const CvSVM&); }; /****************************************************************************************\ * Decision Tree * \****************************************************************************************/\ struct CvPair16u32s { unsigned short* u; int* i; }; #define CV_DTREE_CAT_DIR(idx,subset) \ (2*((subset[(idx)>>5]&(1 << ((idx) & 31)))==0)-1) struct CvDTreeSplit { int var_idx; int condensed_idx; int inversed; float quality; CvDTreeSplit* next; union { int subset[2]; struct { float c; int split_point; } ord; }; }; struct CvDTreeNode { int class_idx; int Tn; double value; CvDTreeNode* parent; CvDTreeNode* left; CvDTreeNode* right; CvDTreeSplit* split; int sample_count; int depth; int* num_valid; int offset; int buf_idx; double maxlr; // global pruning data int complexity; double alpha; double node_risk, tree_risk, tree_error; // cross-validation pruning data int* cv_Tn; double* cv_node_risk; double* cv_node_error; int get_num_valid(int vi) { return num_valid ? num_valid[vi] : sample_count; } void set_num_valid(int vi, int n) { if( num_valid ) num_valid[vi] = n; } }; struct CvDTreeParams { CV_PROP_RW int max_categories; CV_PROP_RW int max_depth; CV_PROP_RW int min_sample_count; CV_PROP_RW int cv_folds; CV_PROP_RW bool use_surrogates; CV_PROP_RW bool use_1se_rule; CV_PROP_RW bool truncate_pruned_tree; CV_PROP_RW float regression_accuracy; const float* priors; CvDTreeParams(); CvDTreeParams( int max_depth, int min_sample_count, float regression_accuracy, bool use_surrogates, int max_categories, int cv_folds, bool use_1se_rule, bool truncate_pruned_tree, const float* priors ); }; struct CvDTreeTrainData { CvDTreeTrainData(); CvDTreeTrainData( const CvMat* trainData, int tflag, const CvMat* responses, const CvMat* varIdx=0, const CvMat* sampleIdx=0, const CvMat* varType=0, const CvMat* missingDataMask=0, const CvDTreeParams& params=CvDTreeParams(), bool _shared=false, bool _add_labels=false ); virtual ~CvDTreeTrainData(); virtual void set_data( const CvMat* trainData, int tflag, const CvMat* responses, const CvMat* varIdx=0, const CvMat* sampleIdx=0, const CvMat* varType=0, const CvMat* missingDataMask=0, const CvDTreeParams& params=CvDTreeParams(), bool _shared=false, bool _add_labels=false, bool _update_data=false ); virtual void do_responses_copy(); virtual void get_vectors( const CvMat* _subsample_idx, float* values, uchar* missing, float* responses, bool get_class_idx=false ); virtual CvDTreeNode* subsample_data( const CvMat* _subsample_idx ); virtual void write_params( cv::FileStorage& fs ) const; virtual void read_params( const cv::FileNode& node ); // release all the data virtual void clear(); int get_num_classes() const; int get_var_type(int vi) const; int get_work_var_count() const {return work_var_count;} virtual const float* get_ord_responses( CvDTreeNode* n, float* values_buf, int* sample_indices_buf ); virtual const int* get_class_labels( CvDTreeNode* n, int* labels_buf ); virtual const int* get_cv_labels( CvDTreeNode* n, int* labels_buf ); virtual const int* get_sample_indices( CvDTreeNode* n, int* indices_buf ); virtual const int* get_cat_var_data( CvDTreeNode* n, int vi, int* cat_values_buf ); virtual void get_ord_var_data( CvDTreeNode* n, int vi, float* ord_values_buf, int* sorted_indices_buf, const float** ord_values, const int** sorted_indices, int* sample_indices_buf ); virtual int get_child_buf_idx( CvDTreeNode* n ); //////////////////////////////////// virtual bool set_params( const CvDTreeParams& params ); virtual CvDTreeNode* new_node( CvDTreeNode* parent, int count, int storage_idx, int offset ); virtual CvDTreeSplit* new_split_ord( int vi, float cmp_val, int split_point, int inversed, float quality ); virtual CvDTreeSplit* new_split_cat( int vi, float quality ); virtual void free_node_data( CvDTreeNode* node ); virtual void free_train_data(); virtual void free_node( CvDTreeNode* node ); int sample_count, var_all, var_count, max_c_count; int ord_var_count, cat_var_count, work_var_count; bool have_labels, have_priors; bool is_classifier; int tflag; const CvMat* train_data; const CvMat* responses; CvMat* responses_copy; // used in Boosting int buf_count, buf_size; // buf_size is obsolete, please do not use it, use expression ((int64)buf->rows * (int64)buf->cols / buf_count) instead bool shared; int is_buf_16u; CvMat* cat_count; CvMat* cat_ofs; CvMat* cat_map; CvMat* counts; CvMat* buf; inline size_t get_length_subbuf() const { size_t res = (size_t)(work_var_count + 1) * (size_t)sample_count; return res; } CvMat* direction; CvMat* split_buf; CvMat* var_idx; CvMat* var_type; // i-th element = // k<0 - ordered // k>=0 - categorical, see k-th element of cat_* arrays CvMat* priors; CvMat* priors_mult; CvDTreeParams params; CvMemStorage* tree_storage; CvMemStorage* temp_storage; CvDTreeNode* data_root; CvSet* node_heap; CvSet* split_heap; CvSet* cv_heap; CvSet* nv_heap; cv::RNG* rng; }; class CvDTree; class CvForestTree; namespace cv { struct DTreeBestSplitFinder; struct ForestTreeBestSplitFinder; } class CvDTree : public CvStatModel { public: CV_WRAP CvDTree(); virtual ~CvDTree(); virtual bool train( const CvMat* trainData, int tflag, const CvMat* responses, const CvMat* varIdx=0, const CvMat* sampleIdx=0, const CvMat* varType=0, const CvMat* missingDataMask=0, CvDTreeParams params=CvDTreeParams() ); virtual bool train( CvMLData* trainData, CvDTreeParams params=CvDTreeParams() ); // type in {CV_TRAIN_ERROR, CV_TEST_ERROR} virtual float calc_error( CvMLData* trainData, int type, std::vector *resp = 0 ); virtual bool train( CvDTreeTrainData* trainData, const CvMat* subsampleIdx ); virtual CvDTreeNode* predict( const CvMat* sample, const CvMat* missingDataMask=0, bool preprocessedInput=false ) const; CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag, const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(), const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(), const cv::Mat& missingDataMask=cv::Mat(), CvDTreeParams params=CvDTreeParams() ); CV_WRAP virtual CvDTreeNode* predict( const cv::Mat& sample, const cv::Mat& missingDataMask=cv::Mat(), bool preprocessedInput=false ) const; CV_WRAP virtual cv::Mat getVarImportance(); virtual const CvMat* get_var_importance(); CV_WRAP virtual void clear(); virtual void read( const cv::FileNode& node ); virtual void write( cv::FileStorage& fs, const char* name ) const; // special read & write methods for trees in the tree ensembles virtual void read( const cv::FileNode& node, CvDTreeTrainData* data ); virtual void write( cv::FileStorage& fs ) const; const CvDTreeNode* get_root() const; int get_pruned_tree_idx() const; CvDTreeTrainData* get_data(); protected: friend struct cv::DTreeBestSplitFinder; virtual bool do_train( const CvMat* _subsample_idx ); virtual void try_split_node( CvDTreeNode* n ); virtual void split_node_data( CvDTreeNode* n ); virtual CvDTreeSplit* find_best_split( CvDTreeNode* n ); virtual CvDTreeSplit* find_split_ord_class( CvDTreeNode* n, int vi, float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); virtual CvDTreeSplit* find_split_cat_class( CvDTreeNode* n, int vi, float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); virtual CvDTreeSplit* find_split_ord_reg( CvDTreeNode* n, int vi, float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); virtual CvDTreeSplit* find_split_cat_reg( CvDTreeNode* n, int vi, float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); virtual CvDTreeSplit* find_surrogate_split_ord( CvDTreeNode* n, int vi, uchar* ext_buf = 0 ); virtual CvDTreeSplit* find_surrogate_split_cat( CvDTreeNode* n, int vi, uchar* ext_buf = 0 ); virtual double calc_node_dir( CvDTreeNode* node ); virtual void complete_node_dir( CvDTreeNode* node ); virtual void cluster_categories( const int* vectors, int vector_count, int var_count, int* sums, int k, int* cluster_labels ); virtual void calc_node_value( CvDTreeNode* node ); virtual void prune_cv(); virtual double update_tree_rnc( int T, int fold ); virtual int cut_tree( int T, int fold, double min_alpha ); virtual void free_prune_data(bool cut_tree); virtual void free_tree(); virtual void write_node( cv::FileStorage& fs, CvDTreeNode* node ) const; virtual void write_split( cv::FileStorage& fs, CvDTreeSplit* split ) const; virtual CvDTreeNode* read_node( const cv::FileNode& node, CvDTreeNode* parent ); virtual CvDTreeSplit* read_split( const cv::FileNode& node ); virtual void write_tree_nodes( cv::FileStorage& fs ) const; virtual void read_tree_nodes( const cv::FileNode& node ); CvDTreeNode* root; CvMat* var_importance; CvDTreeTrainData* data; CvMat train_data_hdr, responses_hdr; cv::Mat train_data_mat, responses_mat; public: int pruned_tree_idx; }; /****************************************************************************************\ * Random Trees Classifier * \****************************************************************************************/ class CvRTrees; class CvForestTree: public CvDTree { public: CvForestTree(); virtual ~CvForestTree(); virtual bool train( CvDTreeTrainData* trainData, const CvMat* _subsample_idx, CvRTrees* forest ); virtual int get_var_count() const {return data ? data->var_count : 0;} virtual void read( cv::FileStorage& fs, cv::FileNode& node, CvRTrees* forest, CvDTreeTrainData* _data ); /* dummy methods to avoid warnings: BEGIN */ virtual bool train( const CvMat* trainData, int tflag, const CvMat* responses, const CvMat* varIdx=0, const CvMat* sampleIdx=0, const CvMat* varType=0, const CvMat* missingDataMask=0, CvDTreeParams params=CvDTreeParams() ); virtual bool train( CvDTreeTrainData* trainData, const CvMat* _subsample_idx ); virtual void read( cv::FileStorage& fs, cv::FileNode& node ); virtual void read( cv::FileStorage& fs, cv::FileNode& node, CvDTreeTrainData* data ); /* dummy methods to avoid warnings: END */ protected: friend struct cv::ForestTreeBestSplitFinder; virtual CvDTreeSplit* find_best_split( CvDTreeNode* n ); CvRTrees* forest; }; struct CvRTParams : public CvDTreeParams { //Parameters for the forest CV_PROP_RW bool calc_var_importance; // true <=> RF processes variable importance CV_PROP_RW int nactive_vars; CV_PROP_RW CvTermCriteria term_crit; CvRTParams(); CvRTParams( int max_depth, int min_sample_count, float regression_accuracy, bool use_surrogates, int max_categories, const float* priors, bool calc_var_importance, int nactive_vars, int max_num_of_trees_in_the_forest, float forest_accuracy, int termcrit_type ); }; class CvRTrees : public CvStatModel { public: CV_WRAP CvRTrees(); virtual ~CvRTrees(); virtual bool train( const CvMat* trainData, int tflag, const CvMat* responses, const CvMat* varIdx=0, const CvMat* sampleIdx=0, const CvMat* varType=0, const CvMat* missingDataMask=0, CvRTParams params=CvRTParams() ); virtual bool train( CvMLData* data, CvRTParams params=CvRTParams() ); virtual float predict( const CvMat* sample, const CvMat* missing = 0 ) const; virtual float predict_prob( const CvMat* sample, const CvMat* missing = 0 ) const; CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag, const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(), const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(), const cv::Mat& missingDataMask=cv::Mat(), CvRTParams params=CvRTParams() ); CV_WRAP virtual float predict( const cv::Mat& sample, const cv::Mat& missing = cv::Mat() ) const; CV_WRAP virtual float predict_prob( const cv::Mat& sample, const cv::Mat& missing = cv::Mat() ) const; CV_WRAP virtual cv::Mat getVarImportance(); CV_WRAP virtual void clear(); virtual const CvMat* get_var_importance(); virtual float get_proximity( const CvMat* sample1, const CvMat* sample2, const CvMat* missing1 = 0, const CvMat* missing2 = 0 ) const; virtual float calc_error( CvMLData* data, int type , std::vector* resp = 0 ); // type in {CV_TRAIN_ERROR, CV_TEST_ERROR} virtual float get_train_error(); virtual void read( cv::FileStorage& fs, cv::FileNode& node ); virtual void write( cv::FileStorage& fs, const char* name ) const; CvMat* get_active_var_mask(); CvRNG* get_rng(); int get_tree_count() const; CvForestTree* get_tree(int i) const; protected: virtual cv::String getName() const; virtual bool grow_forest( const CvTermCriteria term_crit ); // array of the trees of the forest CvForestTree** trees; CvDTreeTrainData* data; CvMat train_data_hdr, responses_hdr; cv::Mat train_data_mat, responses_mat; int ntrees; int nclasses; double oob_error; CvMat* var_importance; int nsamples; cv::RNG* rng; CvMat* active_var_mask; }; /****************************************************************************************\ * Extremely randomized trees Classifier * \****************************************************************************************/ struct CvERTreeTrainData : public CvDTreeTrainData { virtual void set_data( const CvMat* trainData, int tflag, const CvMat* responses, const CvMat* varIdx=0, const CvMat* sampleIdx=0, const CvMat* varType=0, const CvMat* missingDataMask=0, const CvDTreeParams& params=CvDTreeParams(), bool _shared=false, bool _add_labels=false, bool _update_data=false ); virtual void get_ord_var_data( CvDTreeNode* n, int vi, float* ord_values_buf, int* missing_buf, const float** ord_values, const int** missing, int* sample_buf = 0 ); virtual const int* get_sample_indices( CvDTreeNode* n, int* indices_buf ); virtual const int* get_cv_labels( CvDTreeNode* n, int* labels_buf ); virtual const int* get_cat_var_data( CvDTreeNode* n, int vi, int* cat_values_buf ); virtual void get_vectors( const CvMat* _subsample_idx, float* values, uchar* missing, float* responses, bool get_class_idx=false ); virtual CvDTreeNode* subsample_data( const CvMat* _subsample_idx ); const CvMat* missing_mask; }; class CvForestERTree : public CvForestTree { protected: virtual double calc_node_dir( CvDTreeNode* node ); virtual CvDTreeSplit* find_split_ord_class( CvDTreeNode* n, int vi, float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); virtual CvDTreeSplit* find_split_cat_class( CvDTreeNode* n, int vi, float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); virtual CvDTreeSplit* find_split_ord_reg( CvDTreeNode* n, int vi, float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); virtual CvDTreeSplit* find_split_cat_reg( CvDTreeNode* n, int vi, float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); virtual void split_node_data( CvDTreeNode* n ); }; class CvERTrees : public CvRTrees { public: CV_WRAP CvERTrees(); virtual ~CvERTrees(); virtual bool train( const CvMat* trainData, int tflag, const CvMat* responses, const CvMat* varIdx=0, const CvMat* sampleIdx=0, const CvMat* varType=0, const CvMat* missingDataMask=0, CvRTParams params=CvRTParams()); CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag, const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(), const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(), const cv::Mat& missingDataMask=cv::Mat(), CvRTParams params=CvRTParams()); virtual bool train( CvMLData* data, CvRTParams params=CvRTParams() ); protected: virtual cv::String getName() const; virtual bool grow_forest( const CvTermCriteria term_crit ); }; /****************************************************************************************\ * Boosted tree classifier * \****************************************************************************************/ struct CvBoostParams : public CvDTreeParams { CV_PROP_RW int boost_type; CV_PROP_RW int weak_count; CV_PROP_RW int split_criteria; CV_PROP_RW double weight_trim_rate; CvBoostParams(); CvBoostParams( int boost_type, int weak_count, double weight_trim_rate, int max_depth, bool use_surrogates, const float* priors ); }; class CvBoost; class CvBoostTree: public CvDTree { public: CvBoostTree(); virtual ~CvBoostTree(); virtual bool train( CvDTreeTrainData* trainData, const CvMat* subsample_idx, CvBoost* ensemble ); virtual void scale( double s ); virtual void read( const cv::FileNode& node, CvBoost* ensemble, CvDTreeTrainData* _data ); virtual void clear(); /* dummy methods to avoid warnings: BEGIN */ virtual bool train( const CvMat* trainData, int tflag, const CvMat* responses, const CvMat* varIdx=0, const CvMat* sampleIdx=0, const CvMat* varType=0, const CvMat* missingDataMask=0, CvDTreeParams params=CvDTreeParams() ); virtual bool train( CvDTreeTrainData* trainData, const CvMat* _subsample_idx ); virtual void read( cv::FileNode& node ); virtual void read( cv::FileNode& node, CvDTreeTrainData* data ); /* dummy methods to avoid warnings: END */ protected: virtual void try_split_node( CvDTreeNode* n ); virtual CvDTreeSplit* find_surrogate_split_ord( CvDTreeNode* n, int vi, uchar* ext_buf = 0 ); virtual CvDTreeSplit* find_surrogate_split_cat( CvDTreeNode* n, int vi, uchar* ext_buf = 0 ); virtual CvDTreeSplit* find_split_ord_class( CvDTreeNode* n, int vi, float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); virtual CvDTreeSplit* find_split_cat_class( CvDTreeNode* n, int vi, float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); virtual CvDTreeSplit* find_split_ord_reg( CvDTreeNode* n, int vi, float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); virtual CvDTreeSplit* find_split_cat_reg( CvDTreeNode* n, int vi, float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); virtual void calc_node_value( CvDTreeNode* n ); virtual double calc_node_dir( CvDTreeNode* n ); CvBoost* ensemble; }; class CvBoost : public CvStatModel { public: // Boosting type enum { DISCRETE=0, REAL=1, LOGIT=2, GENTLE=3 }; // Splitting criteria enum { DEFAULT=0, GINI=1, MISCLASS=3, SQERR=4 }; CV_WRAP CvBoost(); virtual ~CvBoost(); CvBoost( const CvMat* trainData, int tflag, const CvMat* responses, const CvMat* varIdx=0, const CvMat* sampleIdx=0, const CvMat* varType=0, const CvMat* missingDataMask=0, CvBoostParams params=CvBoostParams() ); virtual bool train( const CvMat* trainData, int tflag, const CvMat* responses, const CvMat* varIdx=0, const CvMat* sampleIdx=0, const CvMat* varType=0, const CvMat* missingDataMask=0, CvBoostParams params=CvBoostParams(), bool update=false ); virtual bool train( CvMLData* data, CvBoostParams params=CvBoostParams(), bool update=false ); virtual float predict( const CvMat* sample, const CvMat* missing=0, CvMat* weak_responses=0, CvSlice slice=CV_WHOLE_SEQ, bool raw_mode=false, bool return_sum=false ) const; CV_WRAP CvBoost( const cv::Mat& trainData, int tflag, const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(), const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(), const cv::Mat& missingDataMask=cv::Mat(), CvBoostParams params=CvBoostParams() ); CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag, const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(), const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(), const cv::Mat& missingDataMask=cv::Mat(), CvBoostParams params=CvBoostParams(), bool update=false ); CV_WRAP virtual float predict( const cv::Mat& sample, const cv::Mat& missing=cv::Mat(), const cv::Range& slice=cv::Range::all(), bool rawMode=false, bool returnSum=false ) const; virtual float calc_error( CvMLData* _data, int type , std::vector *resp = 0 ); // type in {CV_TRAIN_ERROR, CV_TEST_ERROR} CV_WRAP virtual void prune( CvSlice slice ); CV_WRAP virtual void clear(); virtual void write( cv::FileStorage& storage, const char* name ) const; virtual void read( cv::FileNode& node ); virtual const CvMat* get_active_vars(bool absolute_idx=true); CvSeq* get_weak_predictors(); CvMat* get_weights(); CvMat* get_subtree_weights(); CvMat* get_weak_response(); const CvBoostParams& get_params() const; const CvDTreeTrainData* get_data() const; protected: virtual bool set_params( const CvBoostParams& params ); virtual void update_weights( CvBoostTree* tree ); virtual void trim_weights(); virtual void write_params( cv::FileStorage & fs ) const; virtual void read_params( cv::FileNode& node ); virtual void initialize_weights(double (&p)[2]); CvDTreeTrainData* data; CvMat train_data_hdr, responses_hdr; cv::Mat train_data_mat, responses_mat; CvBoostParams params; CvSeq* weak; CvMat* active_vars; CvMat* active_vars_abs; bool have_active_cat_vars; CvMat* orig_response; CvMat* sum_response; CvMat* weak_eval; CvMat* subsample_mask; CvMat* weights; CvMat* subtree_weights; bool have_subsample; }; /****************************************************************************************\ * Gradient Boosted Trees * \****************************************************************************************/ // DataType: STRUCT CvGBTreesParams // Parameters of GBT (Gradient Boosted trees model), including single // tree settings and ensemble parameters. // // weak_count - count of trees in the ensemble // loss_function_type - loss function used for ensemble training // subsample_portion - portion of whole training set used for // every single tree training. // subsample_portion value is in (0.0, 1.0]. // subsample_portion == 1.0 when whole dataset is // used on each step. Count of sample used on each // step is computed as // int(total_samples_count * subsample_portion). // shrinkage - regularization parameter. // Each tree prediction is multiplied on shrinkage value. struct CvGBTreesParams : public CvDTreeParams { CV_PROP_RW int weak_count; CV_PROP_RW int loss_function_type; CV_PROP_RW float subsample_portion; CV_PROP_RW float shrinkage; CvGBTreesParams(); CvGBTreesParams( int loss_function_type, int weak_count, float shrinkage, float subsample_portion, int max_depth, bool use_surrogates ); }; // DataType: CLASS CvGBTrees // Gradient Boosting Trees (GBT) algorithm implementation. // // data - training dataset // params - parameters of the CvGBTrees // weak - array[0..(class_count-1)] of CvSeq // for storing tree ensembles // orig_response - original responses of the training set samples // sum_response - predictions of the current model on the training dataset. // this matrix is updated on every iteration. // sum_response_tmp - predictions of the model on the training set on the next // step. On every iteration values of sum_responses_tmp are // computed via sum_responses values. When the current // step is complete sum_response values become equal to // sum_responses_tmp. // sampleIdx - indices of samples used for training the ensemble. // CvGBTrees training procedure takes a set of samples // (train_data) and a set of responses (responses). // Only pairs (train_data[i], responses[i]), where i is // in sample_idx are used for training the ensemble. // subsample_train - indices of samples used for training a single decision // tree on the current step. This indices are countered // relatively to the sample_idx, so that pairs // (train_data[sample_idx[i]], responses[sample_idx[i]]) // are used for training a decision tree. // Training set is randomly splited // in two parts (subsample_train and subsample_test) // on every iteration accordingly to the portion parameter. // subsample_test - relative indices of samples from the training set, // which are not used for training a tree on the current // step. // missing - mask of the missing values in the training set. This // matrix has the same size as train_data. 1 - missing // value, 0 - not a missing value. // class_labels - output class labels map. // rng - random number generator. Used for splitting the // training set. // class_count - count of output classes. // class_count == 1 in the case of regression, // and > 1 in the case of classification. // delta - Huber loss function parameter. // base_value - start point of the gradient descent procedure. // model prediction is // f(x) = f_0 + sum_{i=1..weak_count-1}(f_i(x)), where // f_0 is the base value. class CvGBTrees : public CvStatModel { public: /* // DataType: ENUM // Loss functions implemented in CvGBTrees. // // SQUARED_LOSS // problem: regression // loss = (x - x')^2 // // ABSOLUTE_LOSS // problem: regression // loss = abs(x - x') // // HUBER_LOSS // problem: regression // loss = delta*( abs(x - x') - delta/2), if abs(x - x') > delta // 1/2*(x - x')^2, if abs(x - x') <= delta, // where delta is the alpha-quantile of pseudo responses from // the training set. // // DEVIANCE_LOSS // problem: classification // */ enum {SQUARED_LOSS=0, ABSOLUTE_LOSS, HUBER_LOSS=3, DEVIANCE_LOSS}; /* // Default constructor. Creates a model only (without training). // Should be followed by one form of the train(...) function. // // API // CvGBTrees(); // INPUT // OUTPUT // RESULT */ CV_WRAP CvGBTrees(); /* // Full form constructor. Creates a gradient boosting model and does the // train. // // API // CvGBTrees( const CvMat* trainData, int tflag, const CvMat* responses, const CvMat* varIdx=0, const CvMat* sampleIdx=0, const CvMat* varType=0, const CvMat* missingDataMask=0, CvGBTreesParams params=CvGBTreesParams() ); // INPUT // trainData - a set of input feature vectors. // size of matrix is // x // or x // depending on the tflag parameter. // matrix values are float. // tflag - a flag showing how do samples stored in the // trainData matrix row by row (tflag=CV_ROW_SAMPLE) // or column by column (tflag=CV_COL_SAMPLE). // responses - a vector of responses corresponding to the samples // in trainData. // varIdx - indices of used variables. zero value means that all // variables are active. // sampleIdx - indices of used samples. zero value means that all // samples from trainData are in the training set. // varType - vector of length. gives every // variable type CV_VAR_CATEGORICAL or CV_VAR_ORDERED. // varType = 0 means all variables are numerical. // missingDataMask - a mask of misiing values in trainData. // missingDataMask = 0 means that there are no missing // values. // params - parameters of GTB algorithm. // OUTPUT // RESULT */ CvGBTrees( const CvMat* trainData, int tflag, const CvMat* responses, const CvMat* varIdx=0, const CvMat* sampleIdx=0, const CvMat* varType=0, const CvMat* missingDataMask=0, CvGBTreesParams params=CvGBTreesParams() ); /* // Destructor. */ virtual ~CvGBTrees(); /* // Gradient tree boosting model training // // API // virtual bool train( const CvMat* trainData, int tflag, const CvMat* responses, const CvMat* varIdx=0, const CvMat* sampleIdx=0, const CvMat* varType=0, const CvMat* missingDataMask=0, CvGBTreesParams params=CvGBTreesParams(), bool update=false ); // INPUT // trainData - a set of input feature vectors. // size of matrix is // x // or x // depending on the tflag parameter. // matrix values are float. // tflag - a flag showing how do samples stored in the // trainData matrix row by row (tflag=CV_ROW_SAMPLE) // or column by column (tflag=CV_COL_SAMPLE). // responses - a vector of responses corresponding to the samples // in trainData. // varIdx - indices of used variables. zero value means that all // variables are active. // sampleIdx - indices of used samples. zero value means that all // samples from trainData are in the training set. // varType - vector of length. gives every // variable type CV_VAR_CATEGORICAL or CV_VAR_ORDERED. // varType = 0 means all variables are numerical. // missingDataMask - a mask of misiing values in trainData. // missingDataMask = 0 means that there are no missing // values. // params - parameters of GTB algorithm. // update - is not supported now. (!) // OUTPUT // RESULT // Error state. */ virtual bool train( const CvMat* trainData, int tflag, const CvMat* responses, const CvMat* varIdx=0, const CvMat* sampleIdx=0, const CvMat* varType=0, const CvMat* missingDataMask=0, CvGBTreesParams params=CvGBTreesParams(), bool update=false ); /* // Gradient tree boosting model training // // API // virtual bool train( CvMLData* data, CvGBTreesParams params=CvGBTreesParams(), bool update=false ) {return false;} // INPUT // data - training set. // params - parameters of GTB algorithm. // update - is not supported now. (!) // OUTPUT // RESULT // Error state. */ virtual bool train( CvMLData* data, CvGBTreesParams params=CvGBTreesParams(), bool update=false ); /* // Response value prediction // // API // virtual float predict_serial( const CvMat* sample, const CvMat* missing=0, CvMat* weak_responses=0, CvSlice slice = CV_WHOLE_SEQ, int k=-1 ) const; // INPUT // sample - input sample of the same type as in the training set. // missing - missing values mask. missing=0 if there are no // missing values in sample vector. // weak_responses - predictions of all of the trees. // not implemented (!) // slice - part of the ensemble used for prediction. // slice = CV_WHOLE_SEQ when all trees are used. // k - number of ensemble used. // k is in {-1,0,1,..,}. // in the case of classification problem // ensembles are built. // If k = -1 ordinary prediction is the result, // otherwise function gives the prediction of the // k-th ensemble only. // OUTPUT // RESULT // Predicted value. */ virtual float predict_serial( const CvMat* sample, const CvMat* missing=0, CvMat* weakResponses=0, CvSlice slice = CV_WHOLE_SEQ, int k=-1 ) const; /* // Response value prediction. // Parallel version (in the case of TBB existence) // // API // virtual float predict( const CvMat* sample, const CvMat* missing=0, CvMat* weak_responses=0, CvSlice slice = CV_WHOLE_SEQ, int k=-1 ) const; // INPUT // sample - input sample of the same type as in the training set. // missing - missing values mask. missing=0 if there are no // missing values in sample vector. // weak_responses - predictions of all of the trees. // not implemented (!) // slice - part of the ensemble used for prediction. // slice = CV_WHOLE_SEQ when all trees are used. // k - number of ensemble used. // k is in {-1,0,1,..,}. // in the case of classification problem // ensembles are built. // If k = -1 ordinary prediction is the result, // otherwise function gives the prediction of the // k-th ensemble only. // OUTPUT // RESULT // Predicted value. */ virtual float predict( const CvMat* sample, const CvMat* missing=0, CvMat* weakResponses=0, CvSlice slice = CV_WHOLE_SEQ, int k=-1 ) const; /* // Deletes all the data. // // API // virtual void clear(); // INPUT // OUTPUT // delete data, weak, orig_response, sum_response, // weak_eval, subsample_train, subsample_test, // sample_idx, missing, lass_labels // delta = 0.0 // RESULT */ CV_WRAP virtual void clear(); /* // Compute error on the train/test set. // // API // virtual float calc_error( CvMLData* _data, int type, // std::vector *resp = 0 ); // // INPUT // data - dataset // type - defines which error is to compute: train (CV_TRAIN_ERROR) or // test (CV_TEST_ERROR). // OUTPUT // resp - vector of predictions // RESULT // Error value. */ virtual float calc_error( CvMLData* _data, int type, std::vector *resp = 0 ); /* // // Write parameters of the gtb model and data. Write learned model. // // API // virtual void write( cv::FileStorage& fs, const char* name ) const; // // INPUT // fs - file storage to read parameters from. // name - model name. // OUTPUT // RESULT */ virtual void write( cv::FileStorage& fs, const char* name ) const; /* // // Read parameters of the gtb model and data. Read learned model. // // API // virtual void read( cv::FileStorage& fs, cv::FileNode& node ); // // INPUT // fs - file storage to read parameters from. // node - file node. // OUTPUT // RESULT */ virtual void read( cv::FileStorage& fs, cv::FileNode& node ); // new-style C++ interface CV_WRAP CvGBTrees( const cv::Mat& trainData, int tflag, const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(), const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(), const cv::Mat& missingDataMask=cv::Mat(), CvGBTreesParams params=CvGBTreesParams() ); CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag, const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(), const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(), const cv::Mat& missingDataMask=cv::Mat(), CvGBTreesParams params=CvGBTreesParams(), bool update=false ); CV_WRAP virtual float predict( const cv::Mat& sample, const cv::Mat& missing=cv::Mat(), const cv::Range& slice = cv::Range::all(), int k=-1 ) const; protected: /* // Compute the gradient vector components. // // API // virtual void find_gradient( const int k = 0); // INPUT // k - used for classification problem, determining current // tree ensemble. // OUTPUT // changes components of data->responses // which correspond to samples used for training // on the current step. // RESULT */ virtual void find_gradient( const int k = 0); /* // // Change values in tree leaves according to the used loss function. // // API // virtual void change_values(CvDTree* tree, const int k = 0); // // INPUT // tree - decision tree to change. // k - used for classification problem, determining current // tree ensemble. // OUTPUT // changes 'value' fields of the trees' leaves. // changes sum_response_tmp. // RESULT */ virtual void change_values(CvDTree* tree, const int k = 0); /* // // Find optimal constant prediction value according to the used loss // function. // The goal is to find a constant which gives the minimal summary loss // on the _Idx samples. // // API // virtual float find_optimal_value( const CvMat* _Idx ); // // INPUT // _Idx - indices of the samples from the training set. // OUTPUT // RESULT // optimal constant value. */ virtual float find_optimal_value( const CvMat* _Idx ); /* // // Randomly split the whole training set in two parts according // to params.portion. // // API // virtual void do_subsample(); // // INPUT // OUTPUT // subsample_train - indices of samples used for training // subsample_test - indices of samples used for test // RESULT */ virtual void do_subsample(); /* // // Internal recursive function giving an array of subtree tree leaves. // // API // void leaves_get( CvDTreeNode** leaves, int& count, CvDTreeNode* node ); // // INPUT // node - current leaf. // OUTPUT // count - count of leaves in the subtree. // leaves - array of pointers to leaves. // RESULT */ void leaves_get( CvDTreeNode** leaves, int& count, CvDTreeNode* node ); /* // // Get leaves of the tree. // // API // CvDTreeNode** GetLeaves( const CvDTree* dtree, int& len ); // // INPUT // dtree - decision tree. // OUTPUT // len - count of the leaves. // RESULT // CvDTreeNode** - array of pointers to leaves. */ CvDTreeNode** GetLeaves( const CvDTree* dtree, int& len ); /* // // Is it a regression or a classification. // // API // bool problem_type(); // // INPUT // OUTPUT // RESULT // false if it is a classification problem, // true - if regression. */ virtual bool problem_type() const; /* // // Write parameters of the gtb model. // // API // virtual void write_params( cv::FileStorage& fs ) const; // // INPUT // fs - file storage to write parameters to. // OUTPUT // RESULT */ virtual void write_params( cv::FileStorage& fs ) const; /* // // Read parameters of the gtb model and data. // // API // virtual void read_params( const cv::FileStorage& fs ); // // INPUT // fs - file storage to read parameters from. // OUTPUT // params - parameters of the gtb model. // data - contains information about the structure // of the data set (count of variables, // their types, etc.). // class_labels - output class labels map. // RESULT */ virtual void read_params( cv::FileStorage& fs, cv::FileNode& fnode ); int get_len(const CvMat* mat) const; CvDTreeTrainData* data; CvGBTreesParams params; CvSeq** weak; CvMat* orig_response; CvMat* sum_response; CvMat* sum_response_tmp; CvMat* sample_idx; CvMat* subsample_train; CvMat* subsample_test; CvMat* missing; CvMat* class_labels; cv::RNG* rng; int class_count; float delta; float base_value; }; /****************************************************************************************\ * Artificial Neural Networks (ANN) * \****************************************************************************************/ /////////////////////////////////// Multi-Layer Perceptrons ////////////////////////////// struct CvANN_MLP_TrainParams { CvANN_MLP_TrainParams(); CvANN_MLP_TrainParams( CvTermCriteria term_crit, int train_method, double param1, double param2=0 ); ~CvANN_MLP_TrainParams(); enum { BACKPROP=0, RPROP=1 }; CV_PROP_RW CvTermCriteria term_crit; CV_PROP_RW int train_method; // backpropagation parameters CV_PROP_RW double bp_dw_scale, bp_moment_scale; // rprop parameters CV_PROP_RW double rp_dw0, rp_dw_plus, rp_dw_minus, rp_dw_min, rp_dw_max; }; class CvANN_MLP : public CvStatModel { public: CV_WRAP CvANN_MLP(); CvANN_MLP( const CvMat* layerSizes, int activateFunc=CvANN_MLP::SIGMOID_SYM, double fparam1=0, double fparam2=0 ); virtual ~CvANN_MLP(); virtual void create( const CvMat* layerSizes, int activateFunc=CvANN_MLP::SIGMOID_SYM, double fparam1=0, double fparam2=0 ); virtual int train( const CvMat* inputs, const CvMat* outputs, const CvMat* sampleWeights, const CvMat* sampleIdx=0, CvANN_MLP_TrainParams params = CvANN_MLP_TrainParams(), int flags=0 ); virtual float predict( const CvMat* inputs, CV_OUT CvMat* outputs ) const; CV_WRAP CvANN_MLP( const cv::Mat& layerSizes, int activateFunc=CvANN_MLP::SIGMOID_SYM, double fparam1=0, double fparam2=0 ); CV_WRAP virtual void create( const cv::Mat& layerSizes, int activateFunc=CvANN_MLP::SIGMOID_SYM, double fparam1=0, double fparam2=0 ); CV_WRAP virtual int train( const cv::Mat& inputs, const cv::Mat& outputs, const cv::Mat& sampleWeights, const cv::Mat& sampleIdx=cv::Mat(), CvANN_MLP_TrainParams params = CvANN_MLP_TrainParams(), int flags=0 ); CV_WRAP virtual float predict( const cv::Mat& inputs, CV_OUT cv::Mat& outputs ) const; CV_WRAP virtual void clear(); // possible activation functions enum { IDENTITY = 0, SIGMOID_SYM = 1, GAUSSIAN = 2 }; // available training flags enum { UPDATE_WEIGHTS = 1, NO_INPUT_SCALE = 2, NO_OUTPUT_SCALE = 4 }; virtual void read( cv::FileStorage& fs, cv::FileNode& node ); virtual void write( cv::FileStorage& storage, const char* name ) const; int get_layer_count() { return layer_sizes ? layer_sizes->cols : 0; } const CvMat* get_layer_sizes() { return layer_sizes; } double* get_weights(int layer) { return layer_sizes && weights && (unsigned)layer <= (unsigned)layer_sizes->cols ? weights[layer] : 0; } virtual void calc_activ_func_deriv( CvMat* xf, CvMat* deriv, const double* bias ) const; protected: virtual bool prepare_to_train( const CvMat* _inputs, const CvMat* _outputs, const CvMat* _sample_weights, const CvMat* sampleIdx, CvVectors* _ivecs, CvVectors* _ovecs, double** _sw, int _flags ); // sequential random backpropagation virtual int train_backprop( CvVectors _ivecs, CvVectors _ovecs, const double* _sw ); // RPROP algorithm virtual int train_rprop( CvVectors _ivecs, CvVectors _ovecs, const double* _sw ); virtual void calc_activ_func( CvMat* xf, const double* bias ) const; virtual void set_activ_func( int _activ_func=SIGMOID_SYM, double _f_param1=0, double _f_param2=0 ); virtual void init_weights(); virtual void scale_input( const CvMat* _src, CvMat* _dst ) const; virtual void scale_output( const CvMat* _src, CvMat* _dst ) const; virtual void calc_input_scale( const CvVectors* vecs, int flags ); virtual void calc_output_scale( const CvVectors* vecs, int flags ); virtual void write_params( cv::FileStorage& fs ) const; virtual void read_params( cv::FileStorage& fs, cv::FileNode& node ); CvMat* layer_sizes; CvMat* wbuf; CvMat* sample_weights; double** weights; double f_param1, f_param2; double min_val, max_val, min_val1, max_val1; int activ_func; int max_count, max_buf_sz; CvANN_MLP_TrainParams params; cv::RNG* rng; }; /****************************************************************************************\ * Data * \****************************************************************************************/ #define CV_COUNT 0 #define CV_PORTION 1 struct CvTrainTestSplit { CvTrainTestSplit(); CvTrainTestSplit( int train_sample_count, bool mix = true); CvTrainTestSplit( float train_sample_portion, bool mix = true); union { int count; float portion; } train_sample_part; int train_sample_part_mode; bool mix; }; class CvMLData { public: CvMLData(); virtual ~CvMLData(); // returns: // 0 - OK // -1 - file can not be opened or is not correct int read_csv( const char* filename ); const CvMat* get_values() const; const CvMat* get_responses(); const CvMat* get_missing() const; void set_header_lines_number( int n ); int get_header_lines_number() const; void set_response_idx( int idx ); // old response become predictors, new response_idx = idx // if idx < 0 there will be no response int get_response_idx() const; void set_train_test_split( const CvTrainTestSplit * spl ); const CvMat* get_train_sample_idx() const; const CvMat* get_test_sample_idx() const; void mix_train_and_test_idx(); const CvMat* get_var_idx(); void chahge_var_idx( int vi, bool state ); // misspelled (saved for back compitability), // use change_var_idx void change_var_idx( int vi, bool state ); // state == true to set vi-variable as predictor const CvMat* get_var_types(); int get_var_type( int var_idx ) const; // following 2 methods enable to change vars type // use these methods to assign CV_VAR_CATEGORICAL type for categorical variable // with numerical labels; in the other cases var types are correctly determined automatically void set_var_types( const char* str ); // str examples: // "ord[0-17],cat[18]", "ord[0,2,4,10-12], cat[1,3,5-9,13,14]", // "cat", "ord" (all vars are categorical/ordered) void change_var_type( int var_idx, int type); // type in { CV_VAR_ORDERED, CV_VAR_CATEGORICAL } void set_delimiter( char ch ); char get_delimiter() const; void set_miss_ch( char ch ); char get_miss_ch() const; const std::map& get_class_labels_map() const; protected: virtual void clear(); void str_to_flt_elem( const char* token, float& flt_elem, int& type); void free_train_test_idx(); char delimiter; char miss_ch; //char flt_separator; CvMat* values; CvMat* missing; CvMat* var_types; CvMat* var_idx_mask; CvMat* response_out; // header CvMat* var_idx_out; // mat CvMat* var_types_out; // mat int header_lines_number; int response_idx; int train_sample_count; bool mix; int total_class_count; std::map class_map; CvMat* train_sample_idx; CvMat* test_sample_idx; int* sample_idx; // data of train_sample_idx and test_sample_idx cv::RNG* rng; }; namespace cv { typedef CvStatModel StatModel; typedef CvParamGrid ParamGrid; typedef CvNormalBayesClassifier NormalBayesClassifier; typedef CvKNearest KNearest; typedef CvSVMParams SVMParams; typedef CvSVMKernel SVMKernel; typedef CvSVMSolver SVMSolver; typedef CvSVM SVM; typedef CvDTreeParams DTreeParams; typedef CvMLData TrainData; typedef CvDTree DecisionTree; typedef CvForestTree ForestTree; typedef CvRTParams RandomTreeParams; typedef CvRTrees RandomTrees; typedef CvERTreeTrainData ERTreeTRainData; typedef CvForestERTree ERTree; typedef CvERTrees ERTrees; typedef CvBoostParams BoostParams; typedef CvBoostTree BoostTree; typedef CvBoost Boost; typedef CvANN_MLP_TrainParams ANN_MLP_TrainParams; typedef CvANN_MLP NeuralNet_MLP; typedef CvGBTreesParams GradientBoostingTreeParams; typedef CvGBTrees GradientBoostingTrees; template<> struct DefaultDeleter{ void operator ()(CvDTreeSplit* obj) const; }; } #endif // __cplusplus #endif // OPENCV_OLD_ML_HPP /* End of file. */