/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #include "npy_blob.hpp" #include namespace opencv_test { namespace { template static std::string _tf(TString filename) { return findDataFile(std::string("dnn/") + filename); } class Test_Caffe_nets : public DNNTestLayer { public: void testFaster(const std::string& proto, const std::string& model, const Mat& ref, double scoreDiff = 0.0, double iouDiff = 0.0) { checkBackend(); Net net = readNetFromCaffe(findDataFile("dnn/" + proto), findDataFile("dnn/" + model, false)); net.setPreferableBackend(backend); net.setPreferableTarget(target); if (target == DNN_TARGET_CPU_FP16) net.enableWinograd(false); Mat img = imread(findDataFile("dnn/dog416.png")); resize(img, img, Size(800, 600)); Mat blob = blobFromImage(img, 1.0, Size(), Scalar(102.9801, 115.9465, 122.7717), false, false); Mat imInfo = (Mat_(1, 3) << img.rows, img.cols, 1.6f); net.setInput(blob, "data"); net.setInput(imInfo, "im_info"); // Output has shape 1x1xNx7 where N - number of detections. // An every detection is a vector of values [id, classId, confidence, left, top, right, bottom] Mat out = net.forward(); scoreDiff = scoreDiff ? scoreDiff : default_l1; iouDiff = iouDiff ? iouDiff : default_lInf; normAssertDetections(ref, out, ("model name: " + model).c_str(), 0.8, scoreDiff, iouDiff); } }; TEST(Test_Caffe, memory_read) { const string proto = findDataFile("dnn/bvlc_googlenet.prototxt"); const string model = findDataFile("dnn/bvlc_googlenet.caffemodel", false); std::vector dataProto; readFileContent(proto, dataProto); std::vector dataModel; readFileContent(model, dataModel); Net net = readNetFromCaffe(dataProto.data(), dataProto.size()); net.setPreferableBackend(DNN_BACKEND_OPENCV); ASSERT_FALSE(net.empty()); Net net2 = readNetFromCaffe(dataProto.data(), dataProto.size(), dataModel.data(), dataModel.size()); ASSERT_FALSE(net2.empty()); } TEST(Test_Caffe, read_gtsrb) { Net net = readNetFromCaffe(_tf("gtsrb.prototxt")); ASSERT_FALSE(net.empty()); } TEST(Test_Caffe, read_googlenet) { Net net = readNetFromCaffe(_tf("bvlc_googlenet.prototxt")); ASSERT_FALSE(net.empty()); } TEST_P(Test_Caffe_nets, Axpy) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); #endif String proto = _tf("axpy.prototxt"); Net net = readNetFromCaffe(proto); checkBackend(); net.setPreferableBackend(backend); net.setPreferableTarget(target); int size[] = {1, 2, 3, 4}; int scale_size[] = {1, 2, 1, 1}; Mat scale(4, &scale_size[0], CV_32F); Mat shift(4, &size[0], CV_32F); Mat inp(4, &size[0], CV_32F); randu(scale, -1.0f, 1.0f); randu(shift, -1.0f, 1.0f); randu(inp, -1.0f, 1.0f); net.setInput(scale, "scale"); net.setInput(shift, "shift"); net.setInput(inp, "data"); Mat out = net.forward(); Mat ref(4, &size[0], inp.type()); for (int i = 0; i < inp.size[1]; i++) { for (int h = 0; h < inp.size[2]; h++) { for (int w = 0; w < inp.size[3]; w++) { int idx[] = {0, i, h, w}; int scale_idx[] = {0, i, 0, 0}; ref.at(idx) = inp.at(idx) * scale.at(scale_idx) + shift.at(idx); } } } float l1 = 1e-5, lInf = 1e-4; if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_CPU_FP16) { l1 = 2e-4; lInf = 1e-3; } if (target == DNN_TARGET_MYRIAD) { l1 = 0.001; lInf = 0.001; } if(target == DNN_TARGET_CUDA_FP16) { l1 = 0.0002; lInf = 0.0007; } normAssert(ref, out, "", l1, lInf); } typedef testing::TestWithParam > Reproducibility_AlexNet; TEST_P(Reproducibility_AlexNet, Accuracy) { Target targetId = get<1>(GetParam()); #if defined(OPENCV_32BIT_CONFIGURATION) && defined(HAVE_OPENCL) applyTestTag(CV_TEST_TAG_MEMORY_2GB); #else applyTestTag(targetId == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB); #endif ASSERT_TRUE(ocl::useOpenCL() || targetId == DNN_TARGET_CPU || targetId == DNN_TARGET_CPU_FP16); bool readFromMemory = get<0>(GetParam()); Net net; { const string proto = findDataFile("dnn/bvlc_alexnet.prototxt"); const string model = findDataFile("dnn/bvlc_alexnet.caffemodel", false); if (readFromMemory) { std::vector dataProto; readFileContent(proto, dataProto); std::vector dataModel; readFileContent(model, dataModel); net = readNetFromCaffe(dataProto.data(), dataProto.size(), dataModel.data(), dataModel.size()); } else net = readNetFromCaffe(proto, model); ASSERT_FALSE(net.empty()); } // Test input layer size std::vector inLayerShapes; std::vector outLayerShapes; net.getLayerShapes(MatShape(), 0, inLayerShapes, outLayerShapes); ASSERT_FALSE(inLayerShapes.empty()); ASSERT_EQ(inLayerShapes[0].size(), 4); ASSERT_EQ(inLayerShapes[0][0], 1); ASSERT_EQ(inLayerShapes[0][1], 3); ASSERT_EQ(inLayerShapes[0][2], 227); ASSERT_EQ(inLayerShapes[0][3], 227); const float l1 = 1e-5; const float lInf = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_CPU_FP16) ? 4e-3 : 1e-4; net.setPreferableBackend(DNN_BACKEND_OPENCV); net.setPreferableTarget(targetId); if (targetId == DNN_TARGET_CPU_FP16) net.enableWinograd(false); Mat sample = imread(_tf("grace_hopper_227.png")); ASSERT_TRUE(!sample.empty()); net.setInput(blobFromImage(sample, 1.0f, Size(227, 227), Scalar(), false), "data"); Mat out = net.forward("prob"); Mat ref = blobFromNPY(_tf("caffe_alexnet_prob.npy")); normAssert(ref, out, "", l1, lInf); } INSTANTIATE_TEST_CASE_P(/**/, Reproducibility_AlexNet, Combine(testing::Bool(), testing::ValuesIn(getAvailableTargets(DNN_BACKEND_OPENCV)))); TEST(Reproducibility_FCN, Accuracy) { applyTestTag(CV_TEST_TAG_LONG, CV_TEST_TAG_DEBUG_VERYLONG, CV_TEST_TAG_MEMORY_2GB); Net net; { const string proto = findDataFile("dnn/fcn8s-heavy-pascal.prototxt"); const string model = findDataFile("dnn/fcn8s-heavy-pascal.caffemodel", false); net = readNetFromCaffe(proto, model); ASSERT_FALSE(net.empty()); } net.setPreferableBackend(DNN_BACKEND_OPENCV); Mat sample = imread(_tf("street.png")); ASSERT_TRUE(!sample.empty()); std::vector layerIds; std::vector weights, blobs; net.getMemoryConsumption(shape(1,3,227,227), layerIds, weights, blobs); net.setInput(blobFromImage(sample, 1.0f, Size(500, 500), Scalar(), false), "data"); Mat out = net.forward("score"); Mat refData = imread(_tf("caffe_fcn8s_prob.png"), IMREAD_ANYDEPTH); int shape[] = {1, 21, 500, 500}; Mat ref(4, shape, CV_32FC1, refData.data); normAssert(ref, out); } TEST(Reproducibility_SSD, Accuracy) { applyTestTag( CV_TEST_TAG_MEMORY_512MB, CV_TEST_TAG_DEBUG_VERYLONG ); Net net; { const string proto = findDataFile("dnn/ssd_vgg16.prototxt"); const string model = findDataFile("dnn/VGG_ILSVRC2016_SSD_300x300_iter_440000.caffemodel", false); net = readNetFromCaffe(proto, model); ASSERT_FALSE(net.empty()); } net.setPreferableBackend(DNN_BACKEND_OPENCV); Mat sample = imread(_tf("street.png")); ASSERT_TRUE(!sample.empty()); if (sample.channels() == 4) cvtColor(sample, sample, COLOR_BGRA2BGR); Mat in_blob = blobFromImage(sample, 1.0f, Size(300, 300), Scalar(), false); net.setInput(in_blob, "data"); Mat out = net.forward("detection_out"); Mat ref = blobFromNPY(_tf("ssd_out.npy")); normAssertDetections(ref, out, "", 0.06); } typedef testing::TestWithParam > Reproducibility_MobileNet_SSD; TEST_P(Reproducibility_MobileNet_SSD, Accuracy) { const string proto = findDataFile("dnn/MobileNetSSD_deploy_19e3ec3.prototxt", false); const string model = findDataFile("dnn/MobileNetSSD_deploy_19e3ec3.caffemodel", false); Net net = readNetFromCaffe(proto, model); int backendId = get<0>(GetParam()); int targetId = get<1>(GetParam()); net.setPreferableBackend(backendId); net.setPreferableTarget(targetId); Mat sample = imread(_tf("street.png")); Mat inp = blobFromImage(sample, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), false); net.setInput(inp); Mat out = net.forward().clone(); ASSERT_EQ(out.size[2], 100); float scores_diff = 1e-5, boxes_iou_diff = 1e-4; if (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD || targetId == DNN_TARGET_CPU_FP16) { scores_diff = 1.5e-2; boxes_iou_diff = 6.3e-2; } else if (targetId == DNN_TARGET_CUDA_FP16) { scores_diff = 0.015; boxes_iou_diff = 0.07; } Mat ref = blobFromNPY(_tf("mobilenet_ssd_caffe_out.npy")); normAssertDetections(ref, out, "", FLT_MIN, scores_diff, boxes_iou_diff); // Check that detections aren't preserved. inp.setTo(0.0f); net.setInput(inp); Mat zerosOut = net.forward(); zerosOut = zerosOut.reshape(1, zerosOut.total() / 7); const int numDetections = zerosOut.rows; // TODO: fix it if (targetId != DNN_TARGET_MYRIAD || getInferenceEngineVPUType() != CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) { ASSERT_NE(numDetections, 0); for (int i = 0; i < numDetections; ++i) { float confidence = zerosOut.ptr(i)[2]; ASSERT_EQ(confidence, 0); } } // There is something wrong with Reshape layer in Myriad plugin. if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH ) { if (targetId == DNN_TARGET_MYRIAD || targetId == DNN_TARGET_OPENCL_FP16) return; } // Check batching mode. inp = blobFromImages(std::vector(2, sample), 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), false); net.setInput(inp); Mat outBatch = net.forward(); // Output blob has a shape 1x1x2Nx7 where N is a number of detection for // a single sample in batch. The first numbers of detection vectors are batch id. // For Inference Engine backend there is -1 delimiter which points the end of detections. const int numRealDetections = ref.size[2]; EXPECT_EQ(outBatch.size[2], 2 * numDetections); out = out.reshape(1, numDetections).rowRange(0, numRealDetections); outBatch = outBatch.reshape(1, 2 * numDetections); for (int i = 0; i < 2; ++i) { Mat pred = outBatch.rowRange(i * numRealDetections, (i + 1) * numRealDetections); EXPECT_EQ(countNonZero(pred.col(0) != i), 0); normAssert(pred.colRange(1, 7), out.colRange(1, 7)); } } INSTANTIATE_TEST_CASE_P(/**/, Reproducibility_MobileNet_SSD, dnnBackendsAndTargets()); typedef testing::TestWithParam Reproducibility_ResNet50; TEST_P(Reproducibility_ResNet50, Accuracy) { Target targetId = GetParam(); applyTestTag(targetId == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB); ASSERT_TRUE(ocl::useOpenCL() || targetId == DNN_TARGET_CPU || targetId == DNN_TARGET_CPU_FP16); Net net = readNetFromCaffe(findDataFile("dnn/ResNet-50-deploy.prototxt"), findDataFile("dnn/ResNet-50-model.caffemodel", false)); net.setPreferableBackend(DNN_BACKEND_OPENCV); net.setPreferableTarget(targetId); if (targetId == DNN_TARGET_CPU_FP16) net.enableWinograd(false); float l1 = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_CPU_FP16) ? 3e-5 : 1e-5; float lInf = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_CPU_FP16) ? 6e-3 : 1e-4; Mat input = blobFromImage(imread(_tf("googlenet_0.png")), 1.0f, Size(224,224), Scalar(), false); ASSERT_TRUE(!input.empty()); net.setInput(input); Mat out = net.forward(); Mat ref = blobFromNPY(_tf("resnet50_prob.npy")); normAssert(ref, out, "", l1, lInf); if (targetId == DNN_TARGET_OPENCL || targetId == DNN_TARGET_OPENCL_FP16) { UMat out_umat; net.forward(out_umat); normAssert(ref, out_umat, "out_umat", l1, lInf); std::vector out_umats; net.forward(out_umats); normAssert(ref, out_umats[0], "out_umat_vector", l1, lInf); } } INSTANTIATE_TEST_CASE_P(/**/, Reproducibility_ResNet50, testing::ValuesIn(getAvailableTargets(DNN_BACKEND_OPENCV))); typedef testing::TestWithParam Reproducibility_SqueezeNet_v1_1; TEST_P(Reproducibility_SqueezeNet_v1_1, Accuracy) { int targetId = GetParam(); if(targetId == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); if(targetId == DNN_TARGET_CPU_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_CPU_FP16); Net net = readNetFromCaffe(findDataFile("dnn/squeezenet_v1.1.prototxt"), findDataFile("dnn/squeezenet_v1.1.caffemodel", false)); net.setPreferableBackend(DNN_BACKEND_OPENCV); net.setPreferableTarget(targetId); Mat input = blobFromImage(imread(_tf("googlenet_0.png")), 1.0f, Size(227,227), Scalar(), false, true); ASSERT_TRUE(!input.empty()); Mat out; if (targetId == DNN_TARGET_OPENCL) { // Firstly set a wrong input blob and run the model to receive a wrong output. // Then set a correct input blob to check CPU->GPU synchronization is working well. net.setInput(input * 2.0f); out = net.forward(); } net.setInput(input); out = net.forward(); Mat ref = blobFromNPY(_tf("squeezenet_v1.1_prob.npy")); normAssert(ref, out); } INSTANTIATE_TEST_CASE_P(/**/, Reproducibility_SqueezeNet_v1_1, testing::ValuesIn(getAvailableTargets(DNN_BACKEND_OPENCV))); TEST(Reproducibility_AlexNet_fp16, Accuracy) { applyTestTag(CV_TEST_TAG_MEMORY_512MB); const float l1 = 1e-5; const float lInf = 3e-3; const string proto = findDataFile("dnn/bvlc_alexnet.prototxt"); const string model = findDataFile("dnn/bvlc_alexnet.caffemodel", false); shrinkCaffeModel(model, "bvlc_alexnet.caffemodel_fp16"); Net net = readNetFromCaffe(proto, "bvlc_alexnet.caffemodel_fp16"); net.setPreferableBackend(DNN_BACKEND_OPENCV); Mat sample = imread(findDataFile("dnn/grace_hopper_227.png")); net.setInput(blobFromImage(sample, 1.0f, Size(227, 227), Scalar())); Mat out = net.forward(); Mat ref = blobFromNPY(findDataFile("dnn/caffe_alexnet_prob.npy")); normAssert(ref, out, "", l1, lInf); } TEST(Reproducibility_GoogLeNet_fp16, Accuracy) { const float l1 = 1e-5; const float lInf = 3e-3; const string proto = findDataFile("dnn/bvlc_googlenet.prototxt"); const string model = findDataFile("dnn/bvlc_googlenet.caffemodel", false); shrinkCaffeModel(model, "bvlc_googlenet.caffemodel_fp16"); Net net = readNetFromCaffe(proto, "bvlc_googlenet.caffemodel_fp16"); net.setPreferableBackend(DNN_BACKEND_OPENCV); std::vector inpMats; inpMats.push_back( imread(_tf("googlenet_0.png")) ); inpMats.push_back( imread(_tf("googlenet_1.png")) ); ASSERT_TRUE(!inpMats[0].empty() && !inpMats[1].empty()); net.setInput(blobFromImages(inpMats, 1.0f, Size(), Scalar(), false), "data"); Mat out = net.forward("prob"); Mat ref = blobFromNPY(_tf("googlenet_prob.npy")); normAssert(out, ref, "", l1, lInf); } // https://github.com/richzhang/colorization TEST_P(Test_Caffe_nets, Colorization) { applyTestTag( target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB, CV_TEST_TAG_DEBUG_VERYLONG ); checkBackend(); Mat inp = blobFromNPY(_tf("colorization_inp.npy")); Mat ref = blobFromNPY(_tf("colorization_out.npy")); Mat kernel = blobFromNPY(_tf("colorization_pts_in_hull.npy")); const string proto = findDataFile("dnn/colorization_deploy_v2.prototxt", false); const string model = findDataFile("dnn/colorization_release_v2.caffemodel", false); Net net = readNetFromCaffe(proto, model); net.setPreferableBackend(backend); net.setPreferableTarget(target); // This model has bad accuracy when the FP16 and Winograd are enable at same time. if (target == DNN_TARGET_CPU_FP16) net.enableWinograd(false); net.getLayer(net.getLayerId("class8_ab"))->blobs.push_back(kernel); net.getLayer(net.getLayerId("conv8_313_rh"))->blobs.push_back(Mat(1, 313, CV_32F, 2.606)); net.setInput(inp); Mat out = net.forward(); // Reference output values are in range [-29.1, 69.5] double l1 = 4e-4, lInf = 3e-3; if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_CPU_FP16) { l1 = 0.25; lInf = 5.3; } else if (target == DNN_TARGET_MYRIAD) { l1 = (getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) ? 0.5 : 0.25; lInf = (getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) ? 11 : 5.3; } else if(target == DNN_TARGET_CUDA_FP16) { l1 = 0.21; lInf = 4.5; } #if defined(INF_ENGINE_RELEASE) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16) { l1 = 0.3; lInf = 10; } #endif normAssert(out, ref, "", l1, lInf); expectNoFallbacksFromIE(net); } TEST_P(Test_Caffe_nets, DenseNet_121) { applyTestTag(CV_TEST_TAG_MEMORY_512MB); checkBackend(); const string proto = findDataFile("dnn/DenseNet_121.prototxt", false); const string weights = findDataFile("dnn/DenseNet_121.caffemodel", false); Mat inp = imread(_tf("dog416.png")); Model model(proto, weights); model.setInputScale(1.0 / 255).setInputSwapRB(true).setInputCrop(true); std::vector outs; Mat ref = blobFromNPY(_tf("densenet_121_output.npy")); model.setPreferableBackend(backend); model.setPreferableTarget(target); model.predict(inp, outs); // Reference is an array of 1000 values from a range [-6.16, 7.9] float l1 = default_l1, lInf = default_lInf; if (target == DNN_TARGET_OPENCL_FP16) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019020000) l1 = 0.05; lInf = 0.3; #else l1 = 0.017; lInf = 0.0795; #endif } else if (target == DNN_TARGET_MYRIAD) { l1 = 0.11; lInf = 0.5; } else if (target == DNN_TARGET_CUDA_FP16) { l1 = 0.04; lInf = 0.2; } else if (target == DNN_TARGET_CPU_FP16) { l1 = 0.06; lInf = 0.3; } normAssert(outs[0], ref, "", l1, lInf); if (target != DNN_TARGET_MYRIAD || getInferenceEngineVPUType() != CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) expectNoFallbacksFromIE(model.getNetwork_()); } TEST(Test_Caffe, multiple_inputs) { const string proto = findDataFile("dnn/layers/net_input.prototxt"); Net net = readNetFromCaffe(proto); net.setPreferableBackend(DNN_BACKEND_OPENCV); Mat first_image(10, 11, CV_32FC3); Mat second_image(10, 11, CV_32FC3); randu(first_image, -1, 1); randu(second_image, -1, 1); first_image = blobFromImage(first_image); second_image = blobFromImage(second_image); Mat first_image_blue_green = slice(first_image, Range::all(), Range(0, 2), Range::all(), Range::all()); Mat first_image_red = slice(first_image, Range::all(), Range(2, 3), Range::all(), Range::all()); Mat second_image_blue_green = slice(second_image, Range::all(), Range(0, 2), Range::all(), Range::all()); Mat second_image_red = slice(second_image, Range::all(), Range(2, 3), Range::all(), Range::all()); net.setInput(first_image_blue_green, "old_style_input_blue_green"); net.setInput(first_image_red, "different_name_for_red"); net.setInput(second_image_blue_green, "input_layer_blue_green"); net.setInput(second_image_red, "old_style_input_red"); Mat out = net.forward(); normAssert(out, first_image + second_image); } TEST(Test_Caffe, shared_weights) { const string proto = findDataFile("dnn/layers/shared_weights.prototxt"); const string model = findDataFile("dnn/layers/shared_weights.caffemodel"); Net net = readNetFromCaffe(proto, model); Mat input_1 = (Mat_(2, 2) << 0., 2., 4., 6.); Mat input_2 = (Mat_(2, 2) << 1., 3., 5., 7.); Mat blob_1 = blobFromImage(input_1); Mat blob_2 = blobFromImage(input_2); net.setInput(blob_1, "input_1"); net.setInput(blob_2, "input_2"); net.setPreferableBackend(DNN_BACKEND_OPENCV); Mat sum = net.forward(); EXPECT_EQ(sum.at(0,0), 12.); EXPECT_EQ(sum.at(0,1), 16.); } typedef testing::TestWithParam > opencv_face_detector; TEST_P(opencv_face_detector, Accuracy) { std::string proto = findDataFile("dnn/opencv_face_detector.prototxt"); std::string model = findDataFile(get<0>(GetParam()), false); dnn::Target targetId = (dnn::Target)(int)get<1>(GetParam()); if (targetId == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); if (targetId == DNN_TARGET_CPU_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_CPU_FP16); Net net = readNetFromCaffe(proto, model); Mat img = imread(findDataFile("gpu/lbpcascade/er.png")); Mat blob = blobFromImage(img, 1.0, Size(), Scalar(104.0, 177.0, 123.0), false, false); net.setPreferableBackend(DNN_BACKEND_OPENCV); net.setPreferableTarget(targetId); net.setInput(blob); // Output has shape 1x1xNx7 where N - number of detections. // An every detection is a vector of values [id, classId, confidence, left, top, right, bottom] Mat out = net.forward(); Mat ref = (Mat_(6, 7) << 0, 1, 0.99520785, 0.80997437, 0.16379407, 0.87996572, 0.26685631, 0, 1, 0.9934696, 0.2831718, 0.50738752, 0.345781, 0.5985168, 0, 1, 0.99096733, 0.13629119, 0.24892329, 0.19756334, 0.3310290, 0, 1, 0.98977017, 0.23901358, 0.09084064, 0.29902688, 0.1769477, 0, 1, 0.97203469, 0.67965847, 0.06876482, 0.73999709, 0.1513494, 0, 1, 0.95097077, 0.51901293, 0.45863652, 0.5777427, 0.5347801); normAssertDetections(ref, out, "", 0.5, 1e-4, 2e-4); } // False positives bug for large faces: https://github.com/opencv/opencv/issues/15106 TEST_P(opencv_face_detector, issue_15106) { std::string proto = findDataFile("dnn/opencv_face_detector.prototxt"); std::string model = findDataFile(get<0>(GetParam()), false); dnn::Target targetId = (dnn::Target)(int)get<1>(GetParam()); if (targetId == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); if (targetId == DNN_TARGET_CPU_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_CPU_FP16); Net net = readNetFromCaffe(proto, model); Mat img = imread(findDataFile("cv/shared/lena.png")); img = img.rowRange(img.rows / 4, 3 * img.rows / 4).colRange(img.cols / 4, 3 * img.cols / 4); Mat blob = blobFromImage(img, 1.0, Size(300, 300), Scalar(104.0, 177.0, 123.0), false, false); net.setPreferableBackend(DNN_BACKEND_OPENCV); net.setPreferableTarget(targetId); net.setInput(blob); // Output has shape 1x1xNx7 where N - number of detections. // An every detection is a vector of values [id, classId, confidence, left, top, right, bottom] Mat out = net.forward(); Mat ref = (Mat_(1, 7) << 0, 1, 0.9149431, 0.30424616, 0.26964942, 0.88733053, 0.99815309); normAssertDetections(ref, out, "", 0.89, 6e-5, 1e-4); } INSTANTIATE_TEST_CASE_P(Test_Caffe, opencv_face_detector, Combine( Values("dnn/opencv_face_detector.caffemodel", "dnn/opencv_face_detector_fp16.caffemodel"), testing::ValuesIn(getAvailableTargets(DNN_BACKEND_OPENCV)) ) ); TEST_P(Test_Caffe_nets, FasterRCNN_vgg16) { applyTestTag( #if defined(OPENCV_32BIT_CONFIGURATION) && defined(HAVE_OPENCL) CV_TEST_TAG_MEMORY_2GB, // utilizes ~1Gb, but huge blobs may not be allocated on 32-bit systems due memory fragmentation #else CV_TEST_TAG_MEMORY_2GB, #endif CV_TEST_TAG_LONG, CV_TEST_TAG_DEBUG_VERYLONG ); #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000) if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)) applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16); if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION); if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD); #endif #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000) // IE exception: Ngraph operation Reshape with name rpn_cls_score_reshape has dynamic output shape on 0 port, but CPU plug-in supports only static shape if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)) applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION ); // Check 'backward_compatible_check || in_out_elements_equal' failed at core/src/op/reshape.cpp:390: // While validating node 'v1::Reshape bbox_pred_reshape (bbox_pred[0]:f32{1,84}, Constant_241202[0]:i64{4}) -> (f32{?,?,?,?})' with friendly_name 'bbox_pred_reshape': // Requested output shape {1,6300,4,1} is incompatible with input shape Shape{1, 84} if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION); #endif double scoreDiff = 0.0012, iouDiff = 0.03; #if defined(INF_ENGINE_RELEASE) if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION); if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) { iouDiff = 0.02; if (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16) { scoreDiff = 0.04; iouDiff = 0.06; } } #endif static Mat ref = (Mat_(3, 7) << 0, 2, 0.949398, 99.2454, 210.141, 601.205, 462.849, 0, 7, 0.997022, 481.841, 92.3218, 722.685, 175.953, 0, 12, 0.993028, 133.221, 189.377, 350.994, 563.166); testFaster("faster_rcnn_vgg16.prototxt", "VGG16_faster_rcnn_final.caffemodel", ref, scoreDiff, iouDiff); } TEST_P(Test_Caffe_nets, FasterRCNN_zf) { applyTestTag( #if defined(OPENCV_32BIT_CONFIGURATION) && defined(HAVE_OPENCL) CV_TEST_TAG_MEMORY_2GB, #else (target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB), #endif CV_TEST_TAG_DEBUG_VERYLONG ); #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000) // IE exception: Ngraph operation Reshape with name rpn_cls_score_reshape has dynamic output shape on 0 port, but CPU plug-in supports only static shape if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)) applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION ); #endif if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD); if (target == DNN_TARGET_CUDA_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA_FP16); if (target == DNN_TARGET_CPU_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_CPU_FP16); static Mat ref = (Mat_(3, 7) << 0, 2, 0.90121, 120.407, 115.83, 570.586, 528.395, 0, 7, 0.988779, 469.849, 75.1756, 718.64, 186.762, 0, 12, 0.967198, 138.588, 206.843, 329.766, 553.176); double scoreDiff = 0.003, iouDiff = 0.07; if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) { scoreDiff = 0.02; iouDiff = 0.13; } testFaster("faster_rcnn_zf.prototxt", "ZF_faster_rcnn_final.caffemodel", ref, scoreDiff, iouDiff); } TEST_P(Test_Caffe_nets, RFCN) { applyTestTag( (target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_2GB), CV_TEST_TAG_LONG, CV_TEST_TAG_DEBUG_VERYLONG ); float scoreDiff = default_l1, iouDiff = default_lInf; if (backend == DNN_BACKEND_OPENCV && (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_CPU_FP16)) { scoreDiff = 4e-3; iouDiff = 8e-2; } if (target == DNN_TARGET_CUDA_FP16) { scoreDiff = 0.0034; iouDiff = 0.12; } #if defined(INF_ENGINE_RELEASE) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) { scoreDiff = 0.1f; iouDiff = 0.2f; } // Check 'backward_compatible_check || in_out_elements_equal' failed at core/src/op/reshape.cpp:427: // While validating node 'v1::Reshape bbox_pred_reshape (ave_bbox_pred_rois[0]:f32{1,8,1,1}, Constant_388[0]:i64{4}) -> (f32{?,?,?,?})' with friendly_name 'bbox_pred_reshape': // Requested output shape {1,300,8,1} is incompatible with input shape {1, 8, 1, 1} if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION); #elif defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000) // Exception: Function contains several inputs and outputs with one friendly name! (HETERO bug?) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target != DNN_TARGET_CPU) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION); #elif defined(INF_ENGINE_RELEASE) if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16); if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD); #endif static Mat ref = (Mat_(2, 7) << 0, 7, 0.991359, 491.822, 81.1668, 702.573, 178.234, 0, 12, 0.94786, 132.093, 223.903, 338.077, 566.16); testFaster("rfcn_pascal_voc_resnet50.prototxt", "resnet50_rfcn_final.caffemodel", ref, scoreDiff, iouDiff); } INSTANTIATE_TEST_CASE_P(/**/, Test_Caffe_nets, dnnBackendsAndTargets()); }} // namespace