// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. #include "test_precomp.hpp" #include "test_aruco_utils.hpp" namespace opencv_test { namespace { enum class ArucoAlgParams { USE_DEFAULT = 0, USE_ARUCO3 = 1 }; /** * @brief Check pose estimation of aruco board */ class CV_ArucoBoardPose : public cvtest::BaseTest { public: CV_ArucoBoardPose(ArucoAlgParams arucoAlgParams) { aruco::DetectorParameters params; aruco::Dictionary dictionary = aruco::getPredefinedDictionary(aruco::DICT_6X6_250); params.minDistanceToBorder = 3; if (arucoAlgParams == ArucoAlgParams::USE_ARUCO3) { params.useAruco3Detection = true; params.cornerRefinementMethod = (int)aruco::CORNER_REFINE_SUBPIX; params.minSideLengthCanonicalImg = 16; params.errorCorrectionRate = 0.8; } detector = aruco::ArucoDetector(dictionary, params); } protected: aruco::ArucoDetector detector; void run(int); }; void CV_ArucoBoardPose::run(int) { int iter = 0; Mat cameraMatrix = Mat::eye(3, 3, CV_64FC1); Size imgSize(500, 500); cameraMatrix.at< double >(0, 0) = cameraMatrix.at< double >(1, 1) = 650; cameraMatrix.at< double >(0, 2) = imgSize.width / 2; cameraMatrix.at< double >(1, 2) = imgSize.height / 2; Mat distCoeffs(5, 1, CV_64FC1, Scalar::all(0)); const int sizeX = 3, sizeY = 3; aruco::DetectorParameters detectorParameters = detector.getDetectorParameters(); // for different perspectives for(double distance : {0.2, 0.35}) { for(int yaw = -55; yaw <= 50; yaw += 25) { for(int pitch = -55; pitch <= 50; pitch += 25) { vector tmpIds; for(int i = 0; i < sizeX*sizeY; i++) tmpIds.push_back((iter + int(i)) % 250); aruco::GridBoard gridboard(Size(sizeX, sizeY), 0.02f, 0.005f, detector.getDictionary(), tmpIds); int markerBorder = iter % 2 + 1; iter++; // create synthetic image Mat img = projectBoard(gridboard, cameraMatrix, deg2rad(yaw), deg2rad(pitch), distance, imgSize, markerBorder); vector > corners; vector ids; detectorParameters.markerBorderBits = markerBorder; detector.setDetectorParameters(detectorParameters); detector.detectMarkers(img, corners, ids); ASSERT_EQ(ids.size(), gridboard.getIds().size()); // estimate pose Mat rvec, tvec; { Mat objPoints, imgPoints; // get object and image points for the solvePnP function gridboard.matchImagePoints(corners, ids, objPoints, imgPoints); solvePnP(objPoints, imgPoints, cameraMatrix, distCoeffs, rvec, tvec); } // check axes vector axes = getAxis(cameraMatrix, distCoeffs, rvec, tvec, gridboard.getRightBottomCorner().x); vector topLeft = getMarkerById(gridboard.getIds()[0], corners, ids); ASSERT_NEAR(topLeft[0].x, axes[0].x, 2.f); ASSERT_NEAR(topLeft[0].y, axes[0].y, 2.f); vector topRight = getMarkerById(gridboard.getIds()[2], corners, ids); ASSERT_NEAR(topRight[1].x, axes[1].x, 2.f); ASSERT_NEAR(topRight[1].y, axes[1].y, 2.f); vector bottomLeft = getMarkerById(gridboard.getIds()[6], corners, ids); ASSERT_NEAR(bottomLeft[3].x, axes[2].x, 2.f); ASSERT_NEAR(bottomLeft[3].y, axes[2].y, 2.f); // check estimate result for(unsigned int i = 0; i < ids.size(); i++) { int foundIdx = -1; for(unsigned int j = 0; j < gridboard.getIds().size(); j++) { if(gridboard.getIds()[j] == ids[i]) { foundIdx = int(j); break; } } if(foundIdx == -1) { ts->printf(cvtest::TS::LOG, "Marker detected with wrong ID in Board test"); ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH); return; } vector< Point2f > projectedCorners; projectPoints(gridboard.getObjPoints()[foundIdx], rvec, tvec, cameraMatrix, distCoeffs, projectedCorners); for(int c = 0; c < 4; c++) { double repError = cv::norm(projectedCorners[c] - corners[i][c]); // TODO cvtest if(repError > 5.) { ts->printf(cvtest::TS::LOG, "Corner reprojection error too high"); ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH); return; } } } } } } } /** * @brief Check refine strategy */ class CV_ArucoRefine : public cvtest::BaseTest { public: CV_ArucoRefine(ArucoAlgParams arucoAlgParams) { aruco::Dictionary dictionary = aruco::getPredefinedDictionary(aruco::DICT_6X6_250); aruco::DetectorParameters params; params.minDistanceToBorder = 3; params.cornerRefinementMethod = (int)aruco::CORNER_REFINE_SUBPIX; if (arucoAlgParams == ArucoAlgParams::USE_ARUCO3) params.useAruco3Detection = true; aruco::RefineParameters refineParams(10.f, 3.f, true); detector = aruco::ArucoDetector(dictionary, params, refineParams); } protected: aruco::ArucoDetector detector; void run(int); }; void CV_ArucoRefine::run(int) { int iter = 0; Mat cameraMatrix = Mat::eye(3, 3, CV_64FC1); Size imgSize(500, 500); cameraMatrix.at< double >(0, 0) = cameraMatrix.at< double >(1, 1) = 650; cameraMatrix.at< double >(0, 2) = imgSize.width / 2; cameraMatrix.at< double >(1, 2) = imgSize.height / 2; Mat distCoeffs(5, 1, CV_64FC1, Scalar::all(0)); aruco::DetectorParameters detectorParameters = detector.getDetectorParameters(); // for different perspectives for(double distance : {0.2, 0.4}) { for(int yaw = -60; yaw < 60; yaw += 30) { for(int pitch = -60; pitch <= 60; pitch += 30) { aruco::GridBoard gridboard(Size(3, 3), 0.02f, 0.005f, detector.getDictionary()); int markerBorder = iter % 2 + 1; iter++; // create synthetic image Mat img = projectBoard(gridboard, cameraMatrix, deg2rad(yaw), deg2rad(pitch), distance, imgSize, markerBorder); // detect markers vector > corners, rejected; vector ids; detectorParameters.markerBorderBits = markerBorder; detector.setDetectorParameters(detectorParameters); detector.detectMarkers(img, corners, ids, rejected); // remove a marker from detection int markersBeforeDelete = (int)ids.size(); if(markersBeforeDelete < 2) continue; rejected.push_back(corners[0]); corners.erase(corners.begin(), corners.begin() + 1); ids.erase(ids.begin(), ids.begin() + 1); // try to refind the erased marker detector.refineDetectedMarkers(img, gridboard, corners, ids, rejected, cameraMatrix, distCoeffs, noArray()); // check result if((int)ids.size() < markersBeforeDelete) { ts->printf(cvtest::TS::LOG, "Error in refine detected markers"); ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH); return; } } } } } TEST(CV_ArucoBoardPose, accuracy) { CV_ArucoBoardPose test(ArucoAlgParams::USE_DEFAULT); test.safe_run(); } typedef CV_ArucoBoardPose CV_Aruco3BoardPose; TEST(CV_Aruco3BoardPose, accuracy) { CV_Aruco3BoardPose test(ArucoAlgParams::USE_ARUCO3); test.safe_run(); } typedef CV_ArucoRefine CV_Aruco3Refine; TEST(CV_ArucoRefine, accuracy) { CV_ArucoRefine test(ArucoAlgParams::USE_DEFAULT); test.safe_run(); } TEST(CV_Aruco3Refine, accuracy) { CV_Aruco3Refine test(ArucoAlgParams::USE_ARUCO3); test.safe_run(); } TEST(CV_ArucoBoardPose, CheckNegativeZ) { double matrixData[9] = { -3.9062571886921410e+02, 0., 4.2350000000000000e+02, 0., 3.9062571886921410e+02, 2.3950000000000000e+02, 0., 0., 1 }; cv::Mat cameraMatrix = cv::Mat(3, 3, CV_64F, matrixData); vector pts3d1, pts3d2; pts3d1.push_back(cv::Point3f(0.326198f, -0.030621f, 0.303620f)); pts3d1.push_back(cv::Point3f(0.325340f, -0.100594f, 0.301862f)); pts3d1.push_back(cv::Point3f(0.255859f, -0.099530f, 0.293416f)); pts3d1.push_back(cv::Point3f(0.256717f, -0.029557f, 0.295174f)); pts3d2.push_back(cv::Point3f(-0.033144f, -0.034819f, 0.245216f)); pts3d2.push_back(cv::Point3f(-0.035507f, -0.104705f, 0.241987f)); pts3d2.push_back(cv::Point3f(-0.105289f, -0.102120f, 0.237120f)); pts3d2.push_back(cv::Point3f(-0.102926f, -0.032235f, 0.240349f)); vector tmpIds = {0, 1}; vector > tmpObjectPoints = {pts3d1, pts3d2}; aruco::Board board(tmpObjectPoints, aruco::getPredefinedDictionary(0), tmpIds); vector > corners; vector pts2d; pts2d.push_back(cv::Point2f(37.7f, 203.3f)); pts2d.push_back(cv::Point2f(38.5f, 120.5f)); pts2d.push_back(cv::Point2f(105.5f, 115.8f)); pts2d.push_back(cv::Point2f(104.2f, 202.7f)); corners.push_back(pts2d); pts2d.clear(); pts2d.push_back(cv::Point2f(476.0f, 184.2f)); pts2d.push_back(cv::Point2f(479.6f, 73.8f)); pts2d.push_back(cv::Point2f(590.9f, 77.0f)); pts2d.push_back(cv::Point2f(587.5f, 188.1f)); corners.push_back(pts2d); Vec3d rvec, tvec; int nUsed = 0; { Mat objPoints, imgPoints; // get object and image points for the solvePnP function board.matchImagePoints(corners, board.getIds(), objPoints, imgPoints); nUsed = (int)objPoints.total()/4; solvePnP(objPoints, imgPoints, cameraMatrix, Mat(), rvec, tvec); } ASSERT_EQ(nUsed, 2); cv::Matx33d rotm; cv::Point3d out; cv::Rodrigues(rvec, rotm); out = cv::Point3d(tvec) + rotm*Point3d(board.getObjPoints()[0][0]); ASSERT_GT(out.z, 0); corners.clear(); pts2d.clear(); pts2d.push_back(cv::Point2f(38.4f, 204.5f)); pts2d.push_back(cv::Point2f(40.0f, 124.7f)); pts2d.push_back(cv::Point2f(102.0f, 119.1f)); pts2d.push_back(cv::Point2f(99.9f, 203.6f)); corners.push_back(pts2d); pts2d.clear(); pts2d.push_back(cv::Point2f(476.0f, 184.3f)); pts2d.push_back(cv::Point2f(479.2f, 75.1f)); pts2d.push_back(cv::Point2f(588.7f, 79.2f)); pts2d.push_back(cv::Point2f(586.3f, 188.5f)); corners.push_back(pts2d); nUsed = 0; { Mat objPoints, imgPoints; // get object and image points for the solvePnP function board.matchImagePoints(corners, board.getIds(), objPoints, imgPoints); nUsed = (int)objPoints.total()/4; solvePnP(objPoints, imgPoints, cameraMatrix, Mat(), rvec, tvec, true); } ASSERT_EQ(nUsed, 2); cv::Rodrigues(rvec, rotm); out = cv::Point3d(tvec) + rotm*Point3d(board.getObjPoints()[0][0]); ASSERT_GT(out.z, 0); } TEST(CV_ArucoGenerateBoard, regression_1226) { int bwidth = 1600; int bheight = 1200; cv::aruco::Dictionary dict = cv::aruco::getPredefinedDictionary(cv::aruco::DICT_4X4_50); cv::aruco::CharucoBoard board(Size(7, 5), 1.0, 0.75, dict); cv::Size sz(bwidth, bheight); cv::Mat mat; ASSERT_NO_THROW( { board.generateImage(sz, mat, 0, 1); }); } TEST(CV_ArucoDictionary, extendDictionary) { aruco::Dictionary base_dictionary = aruco::getPredefinedDictionary(aruco::DICT_4X4_250); aruco::Dictionary custom_dictionary = aruco::extendDictionary(150, 4, base_dictionary); ASSERT_EQ(custom_dictionary.bytesList.rows, 150); ASSERT_EQ(cv::norm(custom_dictionary.bytesList, base_dictionary.bytesList.rowRange(0, 150)), 0.); } }} // namespace