// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. QUnit.module('Core', {}); QUnit.test('test_operations_on_arrays', function(assert) { // Transpose { let mat1 = cv.Mat.eye(9, 7, cv.CV_8UC3); let mat2 = new cv.Mat(); cv.transpose(mat1, mat2); // Verify result. let size = mat2.size(); assert.equal(mat2.channels(), 3); assert.equal(size.height, 7); assert.equal(size.width, 9); } // Concat { let mat = cv.Mat.ones({height: 10, width: 5}, cv.CV_8UC3); let mat2 = cv.Mat.eye({height: 10, width: 5}, cv.CV_8UC3); let mat3 = cv.Mat.eye({height: 10, width: 5}, cv.CV_8UC3); let out = new cv.Mat(); let input = new cv.MatVector(); input.push_back(mat); input.push_back(mat2); input.push_back(mat3); cv.vconcat(input, out); // Verify result. let size = out.size(); assert.equal(out.channels(), 3); assert.equal(size.height, 30); assert.equal(size.width, 5); assert.equal(out.elemSize1(), 1); cv.hconcat(input, out); // Verify result. size = out.size(); assert.equal(out.channels(), 3); assert.equal(size.height, 10); assert.equal(size.width, 15); assert.equal(out.elemSize1(), 1); input.delete(); out.delete(); } // Min, Max { let data1 = new Uint8Array([1, 2, 3, 4, 5, 6, 7, 8, 9]); let data2 = new Uint8Array([0, 4, 0, 8, 0, 12, 0, 16, 0]); let expectedMin = new Uint8Array([0, 2, 0, 4, 0, 6, 0, 8, 0]); let expectedMax = new Uint8Array([1, 4, 3, 8, 5, 12, 7, 16, 9]); let dataPtr = cv._malloc(3*3*1); let dataPtr2 = cv._malloc(3*3*1); let dataHeap = new Uint8Array(cv.HEAPU8.buffer, dataPtr, 3*3*1); dataHeap.set(new Uint8Array(data1.buffer)); let dataHeap2 = new Uint8Array(cv.HEAPU8.buffer, dataPtr2, 3*3*1); dataHeap2.set(new Uint8Array(data2.buffer)); let mat1 = new cv.Mat(3, 3, cv.CV_8UC1, dataPtr, 0); let mat2 = new cv.Mat(3, 3, cv.CV_8UC1, dataPtr2, 0); let mat3 = new cv.Mat(); cv.min(mat1, mat2, mat3); // Verify result. let size = mat2.size(); assert.equal(mat2.channels(), 1); assert.equal(size.height, 3); assert.equal(size.width, 3); assert.deepEqual(mat3.data, expectedMin); cv.max(mat1, mat2, mat3); // Verify result. size = mat2.size(); assert.equal(mat2.channels(), 1); assert.equal(size.height, 3); assert.equal(size.width, 3); assert.deepEqual(mat3.data, expectedMax); cv._free(dataPtr); cv._free(dataPtr2); } // Bitwise operations { let data1 = new Uint8Array([0, 1, 2, 4, 8, 16, 32, 64, 128]); let data2 = new Uint8Array([255, 255, 255, 255, 255, 255, 255, 255, 255]); let expectedAnd = new Uint8Array([0, 1, 2, 4, 8, 16, 32, 64, 128]); let expectedOr = new Uint8Array([255, 255, 255, 255, 255, 255, 255, 255, 255]); let expectedXor = new Uint8Array([255, 254, 253, 251, 247, 239, 223, 191, 127]); let expectedNot = new Uint8Array([255, 254, 253, 251, 247, 239, 223, 191, 127]); let dataPtr = cv._malloc(3*3*1); let dataPtr2 = cv._malloc(3*3*1); let dataHeap = new Uint8Array(cv.HEAPU8.buffer, dataPtr, 3*3*1); dataHeap.set(new Uint8Array(data1.buffer)); let dataHeap2 = new Uint8Array(cv.HEAPU8.buffer, dataPtr2, 3*3*1); dataHeap2.set(new Uint8Array(data2.buffer)); let mat1 = new cv.Mat(3, 3, cv.CV_8UC1, dataPtr, 0); let mat2 = new cv.Mat(3, 3, cv.CV_8UC1, dataPtr2, 0); let mat3 = new cv.Mat(); let none = new cv.Mat(); cv.bitwise_not(mat1, mat3, none); // Verify result. let size = mat3.size(); assert.equal(mat3.channels(), 1); assert.equal(size.height, 3); assert.equal(size.width, 3); assert.deepEqual(mat3.data, expectedNot); cv.bitwise_and(mat1, mat2, mat3, none); // Verify result. size = mat3.size(); assert.equal(mat3.channels(), 1); assert.equal(size.height, 3); assert.equal(size.width, 3); assert.deepEqual(mat3.data, expectedAnd); cv.bitwise_or(mat1, mat2, mat3, none); // Verify result. size = mat3.size(); assert.equal(mat3.channels(), 1); assert.equal(size.height, 3); assert.equal(size.width, 3); assert.deepEqual(mat3.data, expectedOr); cv.bitwise_xor(mat1, mat2, mat3, none); // Verify result. size = mat3.size(); assert.equal(mat3.channels(), 1); assert.equal(size.height, 3); assert.equal(size.width, 3); assert.deepEqual(mat3.data, expectedXor); cv._free(dataPtr); cv._free(dataPtr2); } // Arithmetic operations { let data1 = new Uint8Array([0, 1, 2, 3, 4, 5, 6, 7, 8]); let data2 = new Uint8Array([0, 2, 4, 6, 8, 10, 12, 14, 16]); let data3 = new Uint8Array([0, 1, 0, 1, 0, 1, 0, 1, 0]); // |data1 - data2| let expectedAbsDiff = new Uint8Array([0, 1, 2, 3, 4, 5, 6, 7, 8]); let expectedAdd = new Uint8Array([0, 3, 6, 9, 12, 15, 18, 21, 24]); const alpha = 4; const beta = -1; const gamma = 3; // 4*data1 - data2 + 3 let expectedWeightedAdd = new Uint8Array([3, 5, 7, 9, 11, 13, 15, 17, 19]); let dataPtr = cv._malloc(3*3*1); let dataPtr2 = cv._malloc(3*3*1); let dataPtr3 = cv._malloc(3*3*1); let dataHeap = new Uint8Array(cv.HEAPU8.buffer, dataPtr, 3*3*1); dataHeap.set(new Uint8Array(data1.buffer)); let dataHeap2 = new Uint8Array(cv.HEAPU8.buffer, dataPtr2, 3*3*1); dataHeap2.set(new Uint8Array(data2.buffer)); let dataHeap3 = new Uint8Array(cv.HEAPU8.buffer, dataPtr3, 3*3*1); dataHeap3.set(new Uint8Array(data3.buffer)); let mat1 = new cv.Mat(3, 3, cv.CV_8UC1, dataPtr, 0); let mat2 = new cv.Mat(3, 3, cv.CV_8UC1, dataPtr2, 0); let mat3 = new cv.Mat(3, 3, cv.CV_8UC1, dataPtr3, 0); let dst = new cv.Mat(); let none = new cv.Mat(); cv.absdiff(mat1, mat2, dst); // Verify result. let size = dst.size(); assert.equal(dst.channels(), 1); assert.equal(size.height, 3); assert.equal(size.width, 3); assert.deepEqual(dst.data, expectedAbsDiff); cv.add(mat1, mat2, dst, none, -1); // Verify result. size = dst.size(); assert.equal(dst.channels(), 1); assert.equal(size.height, 3); assert.equal(size.width, 3); assert.deepEqual(dst.data, expectedAdd); cv.addWeighted(mat1, alpha, mat2, beta, gamma, dst, -1); // Verify result. size = dst.size(); assert.equal(dst.channels(), 1); assert.equal(size.height, 3); assert.equal(size.width, 3); assert.deepEqual(dst.data, expectedWeightedAdd); // default parameter cv.addWeighted(mat1, alpha, mat2, beta, gamma, dst); // Verify result. size = dst.size(); assert.equal(dst.channels(), 1); assert.equal(size.height, 3); assert.equal(size.width, 3); assert.deepEqual(dst.data, expectedWeightedAdd); mat1.delete(); mat2.delete(); mat3.delete(); dst.delete(); none.delete(); } // Invert { let inv1 = new cv.Mat(); let inv2 = new cv.Mat(); let inv3 = new cv.Mat(); let inv4 = new cv.Mat(); let data1 = new Float32Array([1, 0, 0, 0, 1, 0, 0, 0, 1]); let data2 = new Float32Array([0, 0, 0, 0, 5, 0, 0, 0, 0]); let data3 = new Float32Array([1, 1, 1, 0, 0, 3, 1, 2, 2, 3, 1, 0, 1, 0, 2, 1]); let data4 = new Float32Array([1, 4, 5, 4, 2, 2, 5, 2, 2]); let expected1 = new Float32Array([1, 0, 0, 0, 1, 0, 0, 0, 1]); // Inverse does not exist! let expected3 = new Float32Array([-3, -1/2, 3/2, 1, 1, 1/4, -1/4, -1/2, 3, 1/4, -5/4, -1/2, -3, 0, 1, 1]); let expected4 = new Float32Array([0, -1, 1, -1, 23/2, -9, 1, -9, 7]); let dataPtr1 = cv._malloc(3*3*4); let dataPtr2 = cv._malloc(3*3*4); let dataPtr3 = cv._malloc(4*4*4); let dataPtr4 = cv._malloc(3*3*4); let dataHeap = new Float32Array(cv.HEAP32.buffer, dataPtr1, 3*3); dataHeap.set(new Float32Array(data1.buffer)); let dataHeap2 = new Float32Array(cv.HEAP32.buffer, dataPtr2, 3*3); dataHeap2.set(new Float32Array(data2.buffer)); let dataHeap3 = new Float32Array(cv.HEAP32.buffer, dataPtr3, 4*4); dataHeap3.set(new Float32Array(data3.buffer)); let dataHeap4 = new Float32Array(cv.HEAP32.buffer, dataPtr4, 3*3); dataHeap4.set(new Float32Array(data4.buffer)); let mat1 = new cv.Mat(3, 3, cv.CV_32FC1, dataPtr1, 0); let mat2 = new cv.Mat(3, 3, cv.CV_32FC1, dataPtr2, 0); let mat3 = new cv.Mat(4, 4, cv.CV_32FC1, dataPtr3, 0); let mat4 = new cv.Mat(3, 3, cv.CV_32FC1, dataPtr4, 0); QUnit.assert.deepEqualWithTolerance = function( value, expected, tolerance ) { for (let i = 0; i < value.length; i= i+1) { this.pushResult( { result: Math.abs(value[i]-expected[i]) < tolerance, actual: value[i], expected: expected[i], } ); } }; cv.invert(mat1, inv1, 0); // Verify result. let size = inv1.size(); assert.equal(inv1.channels(), 1); assert.equal(size.height, 3); assert.equal(size.width, 3); assert.deepEqualWithTolerance(inv1.data32F, expected1, 0.0001); cv.invert(mat2, inv2, 0); // Verify result. assert.deepEqualWithTolerance(inv3.data32F, expected3, 0.0001); cv.invert(mat3, inv3, 0); // Verify result. size = inv3.size(); assert.equal(inv3.channels(), 1); assert.equal(size.height, 4); assert.equal(size.width, 4); assert.deepEqualWithTolerance(inv3.data32F, expected3, 0.0001); cv.invert(mat3, inv3, 1); // Verify result. assert.deepEqualWithTolerance(inv3.data32F, expected3, 0.0001); cv.invert(mat4, inv4, 2); // Verify result. assert.deepEqualWithTolerance(inv4.data32F, expected4, 0.0001); cv.invert(mat4, inv4, 3); // Verify result. assert.deepEqualWithTolerance(inv4.data32F, expected4, 0.0001); mat1.delete(); mat2.delete(); mat3.delete(); mat4.delete(); inv1.delete(); inv2.delete(); inv3.delete(); inv4.delete(); } //Rotate { let dst = new cv.Mat(); let src = cv.matFromArray(3, 2, cv.CV_8U, [1,2,3,4,5,6]); cv.rotate(src, dst, cv.ROTATE_90_CLOCKWISE); let size = dst.size(); assert.equal(size.height, 2, "ROTATE_HEIGHT"); assert.equal(size.width, 3, "ROTATE_WIGTH"); let expected = new Uint8Array([5,3,1,6,4,2]); assert.deepEqual(dst.data, expected); dst.delete(); src.delete(); } }); QUnit.test('test_LUT', function(assert) { { let src = cv.matFromArray(3, 3, cv.CV_8UC1, [255, 128, 0, 0, 128, 255, 1, 2, 254]); let lutTable = []; for (let i = 0; i < 256; i++) { lutTable[i] = 255 - i; } let lut = cv.matFromArray(1, 256, cv.CV_8UC1, lutTable); let dst = new cv.Mat(); cv.LUT(src, lut, dst); // Verify result. assert.equal(dst.ucharAt(0), 0); assert.equal(dst.ucharAt(1), 127); assert.equal(dst.ucharAt(2), 255); assert.equal(dst.ucharAt(3), 255); assert.equal(dst.ucharAt(4), 127); assert.equal(dst.ucharAt(5), 0); assert.equal(dst.ucharAt(6), 254); assert.equal(dst.ucharAt(7), 253); assert.equal(dst.ucharAt(8), 1); src.delete(); lut.delete(); dst.delete(); } });