#!/usr/bin/env python ''' This file is part of OpenCV project. It is subject to the license terms in the LICENSE file found in the top-level directory of this distribution and at http://opencv.org/license.html. This sample inpaints the masked area in the given image. Copyright (C) 2025, Bigvision LLC. How to use: Sample command to run: `python inpainting.py` The system will ask you to draw the mask to be inpainted You can download lama inpainting model using `python download_models.py lama` References: Github: https://github.com/advimman/lama ONNX model: https://huggingface.co/Carve/LaMa-ONNX/blob/main/lama_fp32.onnx ONNX model was further quantized using block quantization from [opencv_zoo](https://github.com/opencv/opencv_zoo) Set environment variable OPENCV_DOWNLOAD_CACHE_DIR to point to the directory where models are downloaded. Also, point OPENCV_SAMPLES_DATA_PATH to opencv/samples/data. ''' import argparse import os.path import numpy as np import cv2 as cv from common import * def help(): print( ''' Use this script for image inpainting using OpenCV. Firstly, download required models i.e. lama using `download_models.py` (if not already done). Set environment variable OPENCV_DOWNLOAD_CACHE_DIR to specify where models should be downloaded. Also, point OPENCV_SAMPLES_DATA_PATH to opencv/samples/data. To run: Example: python inpainting.py [--input=] Inpainting model path can also be specified using --model argument. ''' ) def keyboard_shorcuts(): print(''' Keyboard Shorcuts: Press 'i' to increase brush size. Press 'd' to decrease brush size. Press 'r' to reset mask. Press ' ' (space bar) after selecting area to be inpainted. Press ESC to terminate the program. ''' ) def get_args_parser(): backends = ("default", "openvino", "opencv", "vkcom", "cuda") targets = ("cpu", "opencl", "opencl_fp16", "ncs2_vpu", "hddl_vpu", "vulkan", "cuda", "cuda_fp16") parser = argparse.ArgumentParser(add_help=False) parser.add_argument('--zoo', default=os.path.join(os.path.dirname(os.path.abspath(__file__)), 'models.yml'), help='An optional path to file with preprocessing parameters.') parser.add_argument('--input', '-i', default="rubberwhale1.png", help='Path to image file.', required=False) parser.add_argument('--backend', default="default", type=str, choices=backends, help="Choose one of computation backends: " "default: automatically (by default), " "openvino: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), " "opencv: OpenCV implementation, " "vkcom: VKCOM, " "cuda: CUDA, " "webnn: WebNN") parser.add_argument('--target', default="cpu", type=str, choices=targets, help="Choose one of target computation devices: " "cpu: CPU target (by default), " "opencl: OpenCL, " "opencl_fp16: OpenCL fp16 (half-float precision), " "ncs2_vpu: NCS2 VPU, " "hddl_vpu: HDDL VPU, " "vulkan: Vulkan, " "cuda: CUDA, " "cuda_fp16: CUDA fp16 (half-float preprocess)") args, _ = parser.parse_known_args() add_preproc_args(args.zoo, parser, 'inpainting', prefix="", alias="lama") parser = argparse.ArgumentParser(parents=[parser], description='Image inpainting using OpenCV.', formatter_class=argparse.ArgumentDefaultsHelpFormatter) return parser.parse_args() drawing = False mask_gray = None brush_size = 15 def draw_mask(event, x, y, flags, param): global drawing, mask_gray, brush_size if event == cv.EVENT_LBUTTONDOWN: drawing = True elif event == cv.EVENT_MOUSEMOVE: if drawing: cv.circle(mask_gray, (x, y), brush_size, (255), thickness=-1) elif event == cv.EVENT_LBUTTONUP: drawing = False def main(): global mask_gray, brush_size print("Model loading...") if hasattr(args, 'help'): help() exit(1) args.model = findModel(args.model, args.sha1) engine = cv.dnn.ENGINE_AUTO if args.backend != "default" or args.target != "cpu": engine = cv.dnn.ENGINE_CLASSIC net = cv.dnn.readNetFromONNX(args.model, engine) net.setPreferableBackend(get_backend_id(args.backend)) net.setPreferableTarget(get_target_id(args.target)) input_image = cv.imread(findFile(args.input)) aspect_ratio = input_image.shape[0]/input_image.shape[1] height = int(args.width*aspect_ratio) input_image = cv.resize(input_image, (args.width, height)) image = input_image.copy() keyboard_shorcuts() stdSize = 0.7 stdWeight = 2 stdImgSize = 512 imgWidth = min(input_image.shape[:2]) fontSize = min(1.5, (stdSize*imgWidth)/stdImgSize) fontThickness = max(1,(stdWeight*imgWidth)//stdImgSize) label = "Press 'i' to increase, 'd' to decrease brush size. And 'r' to reset mask. " labelSize, _ = cv.getTextSize(label, cv.FONT_HERSHEY_SIMPLEX, fontSize, fontThickness) alpha = 0.5 # Setting up the window cv.namedWindow("Draw Mask") cv.setMouseCallback("Draw Mask", draw_mask) temp_image = input_image.copy() overlay = input_image.copy() cv.rectangle(overlay, (0, 0), (labelSize[0]+10, labelSize[1]+int(30*fontSize)), (255, 255, 255), cv.FILLED) cv.addWeighted(overlay, alpha, temp_image, 1 - alpha, 0, temp_image) cv.putText(temp_image, "Draw the mask on the image. Press space bar when done.", (10, int(25*fontSize)), cv.FONT_HERSHEY_SIMPLEX, fontSize, (0, 0, 0), fontThickness) cv.putText(temp_image, label, (10, int(50*fontSize)), cv.FONT_HERSHEY_SIMPLEX, fontSize, (0, 0, 0), fontThickness) display_image = temp_image.copy() while True: mask_gray = np.zeros((input_image.shape[0], input_image.shape[1]), dtype=np.uint8) display_image = temp_image.copy() while True: display_image[mask_gray > 0] = [255, 255, 255] cv.imshow("Draw Mask", display_image) key = cv.waitKey(30) & 0xFF if key == ord('i'): # Increase brush size brush_size += 1 print(f"Brush size increased to {brush_size}") elif key == ord('d'): # Decrease brush size brush_size = max(1, brush_size - 1) print(f"Brush size decreased to {brush_size}") elif key == ord('r'): # clear the mask mask_gray = np.zeros((input_image.shape[0], input_image.shape[1]), dtype=np.uint8) display_image = temp_image.copy() print(f"Mask cleared") elif key == ord(' '): # Press space bar to finish drawing break elif key == 27: exit() print("Processing image...") # Inference block image_blob = cv.dnn.blobFromImage(image, args.scale, (args.width, args.height), args.mean, args.rgb, False) mask_blob = cv.dnn.blobFromImage(mask_gray, scalefactor=1.0, size=(args.width, args.height), mean=(0,), swapRB=False, crop=False) mask_blob = (mask_blob > 0).astype(np.float32) net.setInput(image_blob, "image") net.setInput(mask_blob, "mask") output = net.forward() # Postprocessing output_image = output[0] output_image = np.transpose(output_image, (1, 2, 0)) output_image = (output_image).astype(np.uint8) output_image = cv.resize(output_image, (args.width, height)) image = output_image cv.imshow("Inpainted Output", output_image) if __name__ == '__main__': args = get_args_parser() main()