import cv2 as cv import numpy as np import argparse import sys import os sys.path.append(os.path.join(os.path.dirname(__file__), "..")) from dnn.common import * def get_args_parser(func_args): backends = ("default", "openvino", "opencv", "vkcom", "cuda") targets = ("cpu", "opencl", "opencl_fp16", "ncs2_vpu", "hddl_vpu", "vulkan", "cuda", "cuda_fp16") parser = argparse.ArgumentParser(add_help=False) parser.add_argument('--zoo', default=os.path.join(os.path.dirname(os.path.abspath(__file__)), '../dnn', 'models.yml'), help='An optional path to file with preprocessing parameters.') parser.add_argument('--input', help='Path to input image or video file. Skip this argument to capture frames from a camera.', default=0, required=False) parser.add_argument('--method', help='choose method: dexined or canny', default='canny', required=False) parser.add_argument('--chart_type', type=int, default=0, help='chartType: 0-Standard, 1-DigitalSG, 2-Vinyl, default:0') parser.add_argument('--num_charts', type=int, default=1, help='Maximum number of charts in the image') parser.add_argument('--backend', default="default", type=str, choices=backends, help="Choose one of computation backends: " "default: automatically (by default), " "openvino: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), " "opencv: OpenCV implementation, " "vkcom: VKCOM, " "cuda: CUDA, " "webnn: WebNN") parser.add_argument('--target', default="cpu", type=str, choices=targets, help="Choose one of target computation devices: " "cpu: CPU target (by default), " "opencl: OpenCL, " "opencl_fp16: OpenCL fp16 (half-float precision), " "ncs2_vpu: NCS2 VPU, " "hddl_vpu: HDDL VPU, " "vulkan: Vulkan, " "cuda: CUDA, " "cuda_fp16: CUDA fp16 (half-float preprocess)") args, _ = parser.parse_known_args() add_preproc_args(args.zoo, parser, 'mcc', 'mcc') parser = argparse.ArgumentParser(parents=[parser], description=''' To run: Default: python macbeth_chart_detection.py --input=path/to/your/input/image/or/video (don't give --input flag if want to use device camera) DNN model: python macbeth_chart_detection.py mcc --input=path/to/your/input/image/or/video Model path can also be specified using --model argument. And config path can be specified using --config. ''', formatter_class=argparse.RawTextHelpFormatter) return parser.parse_args(func_args) def process_frame(frame, detector, num_charts): image_copy = frame.copy() if not detector.process(frame, num_charts): return None, None checkers = detector.getListColorChecker() detector.draw(checkers, frame) src = checkers[0].getChartsRGB(False) tgt = detector.getRefColors() cv.imshow("image result | Press ESC to quit", frame) cv.imshow("original", image_copy) return src, tgt def main(func_args=None): args = get_args_parser(func_args) if not (0 <= args.chart_type <= 2): raise ValueError("chartType must be 0, 1, or 2") if os.getenv('OPENCV_SAMPLES_DATA_PATH') is not None: try: args.model = findModel(args.model, args.sha1) args.config = findModel(args.config, args.config_sha1) except: print("[WARN] Model file not provided, using default detector. Pass model using --model and config using --config to use dnn based detector.\n\n") args.model = None args.config = None else: args.model = None args.config = None print("[WARN] Model file not provided, using default detector. Pass model using --model and config using --config to use dnn based detector. Or, set OPENCV_SAMPLES_DATA_PATH environment variable.\n\n") if args.model and args.config: # Load the DNN from TensorFlow model engine = cv.dnn.ENGINE_AUTO if args.backend != "default" or args.target != "cpu": engine = cv.dnn.ENGINE_CLASSIC net = cv.dnn.readNetFromTensorflow(args.model, args.config, engine) net.setPreferableBackend(get_backend_id(args.backend)) net.setPreferableTarget(get_target_id(args.target)) detector = cv.mcc_CCheckerDetector.create(net) print("Detecting checkers using neural network.") else: detector = cv.mcc_CCheckerDetector.create() print("Detecting checkers using default method (no DNN).") detector.setColorChartType(args.chart_type) is_video = True if args.input: image = cv.imread(findFile(args.input)) if image is not None: is_video = False else: cap = cv.VideoCapture(findFile(args.input)) else: cap = cv.VideoCapture(0) if is_video: print("To print the actual colors and reference colors for current frame press SPACEBAR. To resume press SPACEBAR again") while True: ret, frame = cap.read() if not ret: break src, tgt = process_frame(frame, detector, args.num_charts) key = cv.waitKey(10) & 0xFF if key == ord(' '): if src is None or tgt is None: print("No color chart detected!!") else: print("Actual colors: ", src) print("Reference colors: ", tgt) print("Press spacebar to resume.") cv.waitKey(0) print("Resumed! Processing continues...") elif key == 27: exit(0) if src is not None or tgt is not None: print("Actual colors: ", src) print("Reference colors: ", tgt) else: src, tgt = process_frame(image, detector, args.num_charts) if src is None or tgt is None: print("No color chart detected!!") else: print("Actual colors: ", src) print("Reference colors: ", tgt) cv.waitKey(0) cv.destroyAllWindows() if __name__ == "__main__": main()