// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html #include "precomp.hpp" namespace cv { namespace hal { CV_CPU_OPTIMIZATION_NAMESPACE_BEGIN void merge8u(const uchar** src, uchar* dst, int len, int cn); void merge16u(const ushort** src, ushort* dst, int len, int cn); void merge32s(const int** src, int* dst, int len, int cn); void merge64s(const int64** src, int64* dst, int len, int cn); #ifndef CV_CPU_OPTIMIZATION_DECLARATIONS_ONLY #if CV_SIMD /* The trick with STORE_UNALIGNED/STORE_ALIGNED_NOCACHE is the following: on IA there are instructions movntps and such to which v_store_interleave(...., STORE_ALIGNED_NOCACHE) is mapped. Those instructions write directly into memory w/o touching cache that results in dramatic speed improvements, especially on large arrays (FullHD, 4K etc.). Those intrinsics require the destination address to be aligned by 16/32 bits (with SSE2 and AVX2, respectively). So we potentially split the processing into 3 stages: 1) the optional prefix part [0:i0), where we use simple unaligned stores. 2) the optional main part [i0:len - VECSZ], where we use "nocache" mode. But in some cases we have to use unaligned stores in this part. 3) the optional suffix part (the tail) (len - VECSZ:len) where we switch back to "unaligned" mode to process the remaining len - VECSZ elements. In principle there can be very poorly aligned data where there is no main part. For that we set i0=0 and use unaligned stores for the whole array. */ template static void vecmerge_( const T** src, T* dst, int len, int cn ) { const int VECSZ = VecT::nlanes; int i, i0 = 0; const T* src0 = src[0]; const T* src1 = src[1]; const int dstElemSize = cn * sizeof(T); int r = (int)((size_t)(void*)dst % (VECSZ*sizeof(T))); hal::StoreMode mode = hal::STORE_ALIGNED_NOCACHE; if( r != 0 ) { mode = hal::STORE_UNALIGNED; if (r % dstElemSize == 0 && len > VECSZ*2) i0 = VECSZ - (r / dstElemSize); } if( cn == 2 ) { for( i = 0; i < len; i += VECSZ ) { if( i > len - VECSZ ) { i = len - VECSZ; mode = hal::STORE_UNALIGNED; } VecT a = vx_load(src0 + i), b = vx_load(src1 + i); v_store_interleave(dst + i*cn, a, b, mode); if( i < i0 ) { i = i0 - VECSZ; mode = hal::STORE_ALIGNED_NOCACHE; } } } else if( cn == 3 ) { const T* src2 = src[2]; for( i = 0; i < len; i += VECSZ ) { if( i > len - VECSZ ) { i = len - VECSZ; mode = hal::STORE_UNALIGNED; } VecT a = vx_load(src0 + i), b = vx_load(src1 + i), c = vx_load(src2 + i); v_store_interleave(dst + i*cn, a, b, c, mode); if( i < i0 ) { i = i0 - VECSZ; mode = hal::STORE_ALIGNED_NOCACHE; } } } else { CV_Assert( cn == 4 ); const T* src2 = src[2]; const T* src3 = src[3]; for( i = 0; i < len; i += VECSZ ) { if( i > len - VECSZ ) { i = len - VECSZ; mode = hal::STORE_UNALIGNED; } VecT a = vx_load(src0 + i), b = vx_load(src1 + i); VecT c = vx_load(src2 + i), d = vx_load(src3 + i); v_store_interleave(dst + i*cn, a, b, c, d, mode); if( i < i0 ) { i = i0 - VECSZ; mode = hal::STORE_ALIGNED_NOCACHE; } } } vx_cleanup(); } #endif template static void merge_( const T** src, T* dst, int len, int cn ) { int k = cn % 4 ? cn % 4 : 4; int i, j; if( k == 1 ) { const T* src0 = src[0]; for( i = j = 0; i < len; i++, j += cn ) dst[j] = src0[i]; } else if( k == 2 ) { const T *src0 = src[0], *src1 = src[1]; i = j = 0; for( ; i < len; i++, j += cn ) { dst[j] = src0[i]; dst[j+1] = src1[i]; } } else if( k == 3 ) { const T *src0 = src[0], *src1 = src[1], *src2 = src[2]; i = j = 0; for( ; i < len; i++, j += cn ) { dst[j] = src0[i]; dst[j+1] = src1[i]; dst[j+2] = src2[i]; } } else { const T *src0 = src[0], *src1 = src[1], *src2 = src[2], *src3 = src[3]; i = j = 0; for( ; i < len; i++, j += cn ) { dst[j] = src0[i]; dst[j+1] = src1[i]; dst[j+2] = src2[i]; dst[j+3] = src3[i]; } } for( ; k < cn; k += 4 ) { const T *src0 = src[k], *src1 = src[k+1], *src2 = src[k+2], *src3 = src[k+3]; for( i = 0, j = k; i < len; i++, j += cn ) { dst[j] = src0[i]; dst[j+1] = src1[i]; dst[j+2] = src2[i]; dst[j+3] = src3[i]; } } } void merge8u(const uchar** src, uchar* dst, int len, int cn ) { CV_INSTRUMENT_REGION(); #if CV_SIMD if( len >= v_uint8::nlanes && 2 <= cn && cn <= 4 ) vecmerge_(src, dst, len, cn); else #endif merge_(src, dst, len, cn); } void merge16u(const ushort** src, ushort* dst, int len, int cn ) { CV_INSTRUMENT_REGION(); #if CV_SIMD if( len >= v_uint16::nlanes && 2 <= cn && cn <= 4 ) vecmerge_(src, dst, len, cn); else #endif merge_(src, dst, len, cn); } void merge32s(const int** src, int* dst, int len, int cn ) { CV_INSTRUMENT_REGION(); #if CV_SIMD if( len >= v_int32::nlanes && 2 <= cn && cn <= 4 ) vecmerge_(src, dst, len, cn); else #endif merge_(src, dst, len, cn); } void merge64s(const int64** src, int64* dst, int len, int cn ) { CV_INSTRUMENT_REGION(); #if CV_SIMD if( len >= v_int64::nlanes && 2 <= cn && cn <= 4 ) vecmerge_(src, dst, len, cn); else #endif merge_(src, dst, len, cn); } #endif CV_CPU_OPTIMIZATION_NAMESPACE_END }} // namespace