/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include "opencv2/core/core.hpp" #include "opencv2/videostab/outlier_rejection.hpp" using namespace std; namespace cv { namespace videostab { void NullOutlierRejector::process( Size frameSize, InputArray points0, InputArray points1, OutputArray mask) { CV_Assert(points0.type() == points1.type()); CV_Assert(points0.getMat().checkVector(2) == points1.getMat().checkVector(2)); int npoints = points0.getMat().checkVector(2); mask.create(1, npoints, CV_8U); Mat mask_ = mask.getMat(); mask_.setTo(1); } TranslationBasedLocalOutlierRejector::TranslationBasedLocalOutlierRejector() { setCellSize(Size(50, 50)); setRansacParams(RansacParams::default2dMotion(MM_TRANSLATION)); } void TranslationBasedLocalOutlierRejector::process( Size frameSize, InputArray points0, InputArray points1, OutputArray mask) { CV_Assert(points0.type() == points1.type()); CV_Assert(points0.getMat().checkVector(2) == points1.getMat().checkVector(2)); int npoints = points0.getMat().checkVector(2); const Point2f* points0_ = points0.getMat().ptr(); const Point2f* points1_ = points1.getMat().ptr(); mask.create(1, npoints, CV_8U); uchar* mask_ = mask.getMat().ptr(); Size ncells((frameSize.width + cellSize_.width - 1) / cellSize_.width, (frameSize.height + cellSize_.height - 1) / cellSize_.height); int cx, cy; // fill grid cells grid_.assign(ncells.area(), Cell()); for (int i = 0; i < npoints; ++i) { cx = std::min(cvRound(points0_[i].x / cellSize_.width), ncells.width - 1); cy = std::min(cvRound(points0_[i].y / cellSize_.height), ncells.height - 1); grid_[cy * ncells.width + cx].push_back(i); } // process each cell RNG rng(0); int niters = ransacParams_.niters(); int ninliers, ninliersMax; vector inliers; float dx, dy, dxBest, dyBest; float x1, y1; int idx; for (size_t ci = 0; ci < grid_.size(); ++ci) { // estimate translation model at the current cell using RANSAC const Cell &cell = grid_[ci]; ninliersMax = 0; dxBest = dyBest = 0.f; // find the best hypothesis if (!cell.empty()) { for (int iter = 0; iter < niters; ++iter) { idx = cell[static_cast(rng) % cell.size()]; dx = points1_[idx].x - points0_[idx].x; dy = points1_[idx].y - points0_[idx].y; ninliers = 0; for (size_t i = 0; i < cell.size(); ++i) { x1 = points0_[cell[i]].x + dx; y1 = points0_[cell[i]].y + dy; if (sqr(x1 - points1_[cell[i]].x) + sqr(y1 - points1_[cell[i]].y) < sqr(ransacParams_.thresh)) { ninliers++; } } if (ninliers > ninliersMax) { ninliersMax = ninliers; dxBest = dx; dyBest = dy; } } } // get the best hypothesis inliers ninliers = 0; inliers.resize(ninliersMax); for (size_t i = 0; i < cell.size(); ++i) { x1 = points0_[cell[i]].x + dxBest; y1 = points0_[cell[i]].y + dyBest; if (sqr(x1 - points1_[cell[i]].x) + sqr(y1 - points1_[cell[i]].y) < sqr(ransacParams_.thresh)) { inliers[ninliers++] = cell[i]; } } // refine the best hypothesis dxBest = dyBest = 0.f; for (size_t i = 0; i < inliers.size(); ++i) { dxBest += points1_[inliers[i]].x - points0_[inliers[i]].x; dyBest += points1_[inliers[i]].y - points0_[inliers[i]].y; } if (!inliers.empty()) { dxBest /= inliers.size(); dyBest /= inliers.size(); } // set mask elements for refined model inliers for (size_t i = 0; i < cell.size(); ++i) { x1 = points0_[cell[i]].x + dxBest; y1 = points0_[cell[i]].y + dyBest; if (sqr(x1 - points1_[cell[i]].x) + sqr(y1 - points1_[cell[i]].y) < sqr(ransacParams_.thresh)) { mask_[cell[i]] = 1; } else { mask_[cell[i]] = 0; } } } } } // namespace videostab } // namespace cv