/* This sample demonstrates the way you can perform independed tasks on the different GPUs */ // Disable some warnings which are caused with CUDA headers #if defined(_MSC_VER) #pragma warning(disable: 4201 4408 4100) #endif #include #include #include #include #if !defined(HAVE_CUDA) || !defined(HAVE_TBB) int main() { #if !defined(HAVE_CUDA) cout << "CUDA support is required (CMake key 'WITH_CUDA' must be true).\n"; #endif #if !defined(HAVE_TBB) cout << "TBB support is required (CMake key 'WITH_TBB' must be true).\n"; #endif return 0; } #else #include "opencv2/core/internal.hpp" // For TBB wrappers using namespace std; using namespace cv; using namespace cv::gpu; struct Worker { void operator()(int device_id) const; }; MultiGpuManager multi_gpu_mgr; int main() { int num_devices = getCudaEnabledDeviceCount(); if (num_devices < 2) { cout << "Two or more GPUs are required\n"; return -1; } for (int i = 0; i < num_devices; ++i) { DeviceInfo dev_info(i); if (!dev_info.isCompatible()) { cout << "GPU module isn't built for GPU #" << i << " (" << dev_info.name() << ", CC " << dev_info.majorVersion() << dev_info.minorVersion() << "\n"; return -1; } } multi_gpu_mgr.init(); // Execute calculation in two threads using two GPUs int devices[] = {0, 2}; parallel_do(devices, devices + 2, Worker()); return 0; } void Worker::operator()(int device_id) const { multi_gpu_mgr.gpuOn(device_id); Mat src(1000, 1000, CV_32F); Mat dst; RNG rng(0); rng.fill(src, RNG::UNIFORM, 0, 1); // CPU works transpose(src, dst); // GPU works GpuMat d_src(src); GpuMat d_dst; transpose(d_src, d_dst); // Check results bool passed = norm(dst - Mat(d_dst), NORM_INF) < 1e-3; cout << "GPU #" << device_id << " (" << DeviceInfo().name() << "): " << (passed ? "passed" : "FAILED") << endl; // Deallocate data here, otherwise deallocation will be performed // after context is extracted from the stack d_src.release(); d_dst.release(); multi_gpu_mgr.gpuOff(); } #endif