// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. #include "../precomp.hpp" #include "../usac.hpp" #include namespace cv { UsacParams::UsacParams() { confidence=0.99; isParallel=false; loIterations=5; loMethod=LOCAL_OPTIM_INNER_LO; loSampleSize=14; maxIterations=5000; neighborsSearch=NEIGH_GRID; randomGeneratorState=0; sampler=SAMPLING_UNIFORM; score=SCORE_METHOD_MSAC; threshold=1.5; final_polisher=COV_POLISHER; final_polisher_iterations=3; } namespace usac { int mergePoints (InputArray pts1_, InputArray pts2_, Mat &pts, bool ispnp); void setParameters (int flag, Ptr ¶ms, EstimationMethod estimator, double thr, int max_iters, double conf, bool mask_needed); class RansacOutputImpl : public RansacOutput { private: std::vector inliers; cv::Mat model, K1, K2; // vector of number_inliers size // vector of points size, true if inlier, false - outlier std::vector inliers_mask; // vector of points size, value of i-th index corresponds to error of i-th point if i is inlier. std::vector residuals; int number_inliers, number_iterations; ModelConfidence conf; public: RansacOutputImpl (const cv::Mat &model_, const std::vector &inliers_mask_, int number_inliers_, int number_iterations_, ModelConfidence conf_, const std::vector &errors_) { model_.copyTo(model); inliers_mask = inliers_mask_; number_inliers = number_inliers_; number_iterations = number_iterations_; residuals = errors_; conf = conf_; } // Return inliers' indices of size = number of inliers const std::vector &getInliers() override { if (inliers.empty()) { inliers.reserve(number_inliers); int pt_cnt = 0; for (bool is_inlier : inliers_mask) { if (is_inlier) inliers.emplace_back(pt_cnt); pt_cnt++; } } return inliers; } const std::vector &getInliersMask() const override { return inliers_mask; } int getNumberOfInliers() const override { return number_inliers; } const Mat &getModel() const override { return model; } int getNumberOfIters() const override { return number_iterations; } ModelConfidence getConfidence() const override { return conf; } const std::vector &getResiduals() const override { return residuals; } }; Ptr RansacOutput::create(const cv::Mat &model_, const std::vector &inliers_mask_, int number_inliers_, int number_iterations_, ModelConfidence conf, const std::vector &errors_) { return makePtr(model_, inliers_mask_, number_inliers_, number_iterations_, conf, errors_); } double getLambda (std::vector &supports, double cdf_thr, int points_size, int sample_size, bool is_independent, int &min_non_random_inliers) { std::sort(supports.begin(), supports.end()); double lambda = supports.size() % 2 ? (supports[supports.size()/2] + supports[supports.size()/2+1])*0.5 : supports[supports.size()/2]; const double cdf = lambda + cdf_thr*sqrt(lambda * (1 - lambda / (is_independent ? points_size - sample_size : points_size))); int lower_than_cdf = 0; lambda = 0; for (const auto &inl : supports) if (inl < cdf) { lambda += inl; lower_than_cdf++; } else break; // list is sorted lambda /= lower_than_cdf; if (lambda < 1 || lower_than_cdf == 0) lambda = 1; // use 0.9999 quantile https://keisan.casio.com/exec/system/14060745333941 if (! is_independent) // do not calculate it for all inliers min_non_random_inliers = (int)(lambda + 2.32*sqrt(lambda * (1 - lambda / points_size))) + 1; return lambda; } class Ransac { public: const Ptr params; Ptr _estimator; Ptr _error; Ptr _quality; Ptr _sampler; Ptr _termination; Ptr _model_verifier; Ptr _degeneracy; Ptr _local_optimization; Ptr polisher; Ptr _gamma_generator; Ptr _min_solver; Ptr _lo_solver, _fo_solver; Ptr _lo_sampler; Ptr _weight_fnc; int points_size, _state, filtered_points_size; double threshold, max_thr; bool parallel; Matx33d T1, T2; Mat points, K1, K2, calib_points, image_points, norm_points, filtered_points; Ptr graph; std::vector> layers; Ransac (const Ptr ¶ms_, cv::InputArray points1, cv::InputArray points2, cv::InputArray K1_, cv::InputArray K2_, cv::InputArray dist_coeff1, cv::InputArray dist_coeff2) : params(params_) { _state = params->getRandomGeneratorState(); threshold = params->getThreshold(); max_thr = std::max(threshold, params->getMaximumThreshold()); parallel = params->isParallel(); Mat undist_points1, undist_points2; if (params->isPnP()) { if (! K1_.empty()) { K1 = K1_.getMat().clone(); K1.convertTo(K1, CV_64F); if (! dist_coeff1.empty()) { // undistortPoints also calibrate points using K undistortPoints(points1.isContinuous() ? points1 : points1.getMat().clone(), undist_points1, K1_, dist_coeff1); points_size = mergePoints(undist_points1, points2, points, true); Utils::normalizeAndDecalibPointsPnP (K1, points, calib_points); } else { points_size = mergePoints(points1, points2, points, true); Utils::calibrateAndNormalizePointsPnP(K1, points, calib_points); } } else points_size = mergePoints(points1, points2, points, true); } else { if (params->isEssential()) { CV_CheckEQ((int)(!K1_.empty() && !K2_.empty()), 1, "Intrinsic matrix must not be empty!"); K1 = K1_.getMat(); K1.convertTo(K1, CV_64F); K2 = K2_.getMat(); K2.convertTo(K2, CV_64F); if (! dist_coeff1.empty() || ! dist_coeff2.empty()) { // undistortPoints also calibrate points using K if (! dist_coeff1.empty()) undistortPoints(points1.isContinuous() ? points1 : points1.getMat().clone(), undist_points1, K1_, dist_coeff1); else undist_points1 = points1.getMat(); if (! dist_coeff2.empty()) undistortPoints(points2.isContinuous() ? points2 : points2.getMat().clone(), undist_points2, K2_, dist_coeff2); else undist_points2 = points2.getMat(); points_size = mergePoints(undist_points1, undist_points2, calib_points, false); } else { points_size = mergePoints(points1, points2, points, false); Utils::calibratePoints(K1, K2, points, calib_points); } threshold = Utils::getCalibratedThreshold(threshold, K1, K2); max_thr = Utils::getCalibratedThreshold(max_thr, K1, K2); } else { points_size = mergePoints(points1, points2, points, false); if (params->isFundamental() && ! K1_.empty() && ! K2_.empty()) { K1 = K1_.getMat(); K1.convertTo(K1, CV_64F); K2 = K2_.getMat(); K2.convertTo(K2, CV_64F); Utils::calibratePoints(K1, K2, points, calib_points); } } } if (params->getSampler() == SamplingMethod::SAMPLING_NAPSAC || params->getLO() == LocalOptimMethod::LOCAL_OPTIM_GC) { if (params->getNeighborsSearch() == NeighborSearchMethod::NEIGH_GRID) { graph = GridNeighborhoodGraph::create(points, points_size, params->getCellSize(), params->getCellSize(), params->getCellSize(), params->getCellSize(), 10); } else if (params->getNeighborsSearch() == NeighborSearchMethod::NEIGH_FLANN_KNN) { graph = FlannNeighborhoodGraph::create(points, points_size,params->getKNN(), false, 5, 1); } else if (params->getNeighborsSearch() == NeighborSearchMethod::NEIGH_FLANN_RADIUS) { graph = RadiusSearchNeighborhoodGraph::create(points, points_size, params->getGraphRadius(), 5, 1); } else CV_Error(cv::Error::StsNotImplemented, "Graph type is not implemented!"); } if (params->getSampler() == SamplingMethod::SAMPLING_PROGRESSIVE_NAPSAC) { CV_CheckEQ((int)params->isPnP(), 0, "ProgressiveNAPSAC for PnP is not implemented!"); const auto &cell_number_per_layer = params->getGridCellNumber(); layers.reserve(cell_number_per_layer.size()); const auto * const pts = (float *) points.data; float img1_width = 0, img1_height = 0, img2_width = 0, img2_height = 0; for (int i = 0; i < 4 * points_size; i += 4) { if (pts[i ] > img1_width ) img1_width = pts[i ]; if (pts[i + 1] > img1_height) img1_height = pts[i + 1]; if (pts[i + 2] > img2_width ) img2_width = pts[i + 2]; if (pts[i + 3] > img2_height) img2_height = pts[i + 3]; } // Create grid graphs (overlapping layes of given cell numbers) for (int layer_idx = 0; layer_idx < (int)cell_number_per_layer.size(); layer_idx++) { const int cell_number = cell_number_per_layer[layer_idx]; if (layer_idx > 0) if (cell_number_per_layer[layer_idx-1] <= cell_number) CV_Error(cv::Error::StsError, "Progressive NAPSAC sampler: " "Cell number in layers must be in decreasing order!"); layers.emplace_back(GridNeighborhoodGraph::create(points, points_size, (int)(img1_width / (float)cell_number), (int)(img1_height / (float)cell_number), (int)(img2_width / (float)cell_number), (int)(img2_height / (float)cell_number), 10)); } } // update points by calibrated for Essential matrix after graph is calculated if (params->isEssential()) { image_points = points; points = calib_points; // if maximum calibrated threshold significanlty differs threshold then set upper bound if (max_thr > 10*threshold) max_thr = 10*threshold; } // Since error function output squared error distance, so make // threshold squared as well threshold *= threshold; if ((params->isHomography() || (params->isFundamental() && (K1.empty() || K2.empty() || !params->isLarssonOptimization())) || params->getEstimator() == EstimationMethod::AFFINE) && (params->getLO() != LOCAL_OPTIM_NULL || params->getFinalPolisher() == COV_POLISHER)) { const auto normTr = NormTransform::create(points); std::vector sample (points_size); for (int i = 0; i < points_size; i++) sample[i] = i; normTr->getNormTransformation(norm_points, sample, points_size, T1, T2); } if (params->getScore() == SCORE_METHOD_MAGSAC || params->getLO() == LOCAL_OPTIM_SIGMA || params->getFinalPolisher() == MAGSAC) _gamma_generator = GammaValues::create(params->getDegreesOfFreedom()); // is thread safe initialize (_state, _min_solver, _lo_solver, _error, _estimator, _degeneracy, _quality, _model_verifier, _local_optimization, _termination, _sampler, _lo_sampler, _weight_fnc, false/*parallel*/); if (params->getFinalPolisher() != NONE_POLISHER) { polisher = NonMinimalPolisher::create(_quality, _fo_solver, params->getFinalPolisher() == MAGSAC ? _weight_fnc : nullptr, params->getFinalLSQIterations(), 0.99); } } void initialize (int state, Ptr &min_solver, Ptr &non_min_solver, Ptr &error, Ptr &estimator, Ptr °eneracy, Ptr &quality, Ptr &verifier, Ptr &lo, Ptr &termination, Ptr &sampler, Ptr &lo_sampler, Ptr &weight_fnc, bool parallel_call) { const int min_sample_size = params->getSampleSize(), prosac_termination_length = std::min((int)(.5*points_size), 100); // inner inlier threshold will be used in LO to obtain inliers // additionally in DEGENSAC for F double inner_inlier_thr_sqr = threshold; if (params->isHomography() && inner_inlier_thr_sqr < 5.25) inner_inlier_thr_sqr = 5.25; // at least 2.5 px else if (params->isFundamental() && inner_inlier_thr_sqr < 4) inner_inlier_thr_sqr = 4; // at least 2 px if (params->getFinalPolisher() == MAGSAC || params->getLO() == LOCAL_OPTIM_SIGMA) weight_fnc = MagsacWeightFunction::create(_gamma_generator, params->getDegreesOfFreedom(), params->getUpperIncompleteOfSigmaQuantile(), params->getC(), params->getMaximumThreshold()); else weight_fnc = nullptr; switch (params->getError()) { case ErrorMetric::SYMM_REPR_ERR: error = ReprojectionErrorSymmetric::create(points); break; case ErrorMetric::FORW_REPR_ERR: if (params->getEstimator() == EstimationMethod::AFFINE) error = ReprojectionErrorAffine::create(points); else error = ReprojectionErrorForward::create(points); break; case ErrorMetric::SAMPSON_ERR: error = SampsonError::create(points); break; case ErrorMetric::SGD_ERR: error = SymmetricGeometricDistance::create(points); break; case ErrorMetric::RERPOJ: error = ReprojectionErrorPmatrix::create(points); break; default: CV_Error(cv::Error::StsNotImplemented , "Error metric is not implemented!"); } const double k_mlesac = params->getKmlesac (); switch (params->getScore()) { case ScoreMethod::SCORE_METHOD_RANSAC : quality = RansacQuality::create(points_size, threshold, error); break; case ScoreMethod::SCORE_METHOD_MSAC : quality = MsacQuality::create(points_size, threshold, error, k_mlesac); break; case ScoreMethod::SCORE_METHOD_MAGSAC : quality = MagsacQuality::create(max_thr, points_size, error, _gamma_generator, threshold, params->getDegreesOfFreedom(), params->getSigmaQuantile(), params->getUpperIncompleteOfSigmaQuantile()); break; case ScoreMethod::SCORE_METHOD_LMEDS : quality = LMedsQuality::create(points_size, threshold, error); break; default: CV_Error(cv::Error::StsNotImplemented, "Score is not implemented!"); } const auto is_ge_solver = params->getRansacSolver() == GEM_SOLVER; if (params->isHomography()) { degeneracy = HomographyDegeneracy::create(points); min_solver = HomographyMinimalSolver4pts::create(points, is_ge_solver); non_min_solver = HomographyNonMinimalSolver::create(norm_points, T1, T2, true); estimator = HomographyEstimator::create(min_solver, non_min_solver, degeneracy); if (!parallel_call && params->getFinalPolisher() != NONE_POLISHER) { if (params->getFinalPolisher() == COV_POLISHER) _fo_solver = CovarianceHomographySolver::create(norm_points, T1, T2); else _fo_solver = HomographyNonMinimalSolver::create(points); } } else if (params->isFundamental()) { if (K1.empty() || K2.empty()) { degeneracy = FundamentalDegeneracy::create(state++, quality, points, min_sample_size, params->getPlaneAndParallaxIters(), std::max(threshold, 8.) /*sqr homogr thr*/, inner_inlier_thr_sqr, K1, K2); } else degeneracy = FundamentalDegeneracyViaE::create(quality, points, calib_points, K1, K2, true/*is F*/); if (min_sample_size == 7) { min_solver = FundamentalMinimalSolver7pts::create(points, is_ge_solver); } else min_solver = FundamentalMinimalSolver8pts::create(points); if (params->isLarssonOptimization() && !K1.empty() && !K2.empty()) { non_min_solver = LarssonOptimizer::create(calib_points, K1, K2, params->getLevMarqItersLO(), true/*F*/); } else { if (weight_fnc) non_min_solver = EpipolarNonMinimalSolver::create(points, true); else non_min_solver = EpipolarNonMinimalSolver::create(norm_points, T1, T2, true); } estimator = FundamentalEstimator::create(min_solver, non_min_solver, degeneracy); if (!parallel_call && params->getFinalPolisher() != NONE_POLISHER) { if (params->isLarssonOptimization() && !K1.empty() && !K2.empty()) _fo_solver = LarssonOptimizer::create(calib_points, K1, K2, params->getLevMarqIters(), true/*F*/); else if (params->getFinalPolisher() == COV_POLISHER) _fo_solver = CovarianceEpipolarSolver::create(norm_points, T1, T2); else _fo_solver = EpipolarNonMinimalSolver::create(points, true); } } else if (params->isEssential()) { if (params->getEstimator() == EstimationMethod::ESSENTIAL) { min_solver = EssentialMinimalSolver5pts::create(points, !is_ge_solver, true/*Nister*/); degeneracy = EssentialDegeneracy::create(points, min_sample_size); } non_min_solver = LarssonOptimizer::create(calib_points, K1, K2, params->getLevMarqItersLO(), false/*E*/); estimator = EssentialEstimator::create(min_solver, non_min_solver, degeneracy); if (!parallel_call && params->getFinalPolisher() != NONE_POLISHER) _fo_solver = LarssonOptimizer::create(calib_points, K1, K2, params->getLevMarqIters(), false/*E*/); } else if (params->isPnP()) { degeneracy = makePtr(); if (min_sample_size == 3) { min_solver = P3PSolver::create(points, calib_points, K1); non_min_solver = DLSPnP::create(points, calib_points, K1); } else { if (is_ge_solver) min_solver = PnPMinimalSolver6Pts::create(points); else min_solver = PnPSVDSolver::create(points); non_min_solver = PnPNonMinimalSolver::create(points); } estimator = PnPEstimator::create(min_solver, non_min_solver); if (!parallel_call && params->getFinalPolisher() != NONE_POLISHER) _fo_solver = non_min_solver; } else if (params->getEstimator() == EstimationMethod::AFFINE) { degeneracy = makePtr(); min_solver = AffineMinimalSolver::create(points); non_min_solver = AffineNonMinimalSolver::create(points, cv::noArray(), cv::noArray()); estimator = AffineEstimator::create(min_solver, non_min_solver); if (!parallel_call && params->getFinalPolisher() != NONE_POLISHER) { if (params->getFinalPolisher() == COV_POLISHER) _fo_solver = CovarianceAffineSolver::create(points); else _fo_solver = non_min_solver; } } else CV_Error(cv::Error::StsNotImplemented, "Estimator not implemented!"); switch (params->getSampler()) { case SamplingMethod::SAMPLING_UNIFORM: sampler = UniformSampler::create(state++, min_sample_size, points_size); break; case SamplingMethod::SAMPLING_PROSAC: if (!parallel_call) // for parallel only one PROSAC sampler sampler = ProsacSampler::create(state++, points_size, min_sample_size, params->getProsacMaxSamples()); break; case SamplingMethod::SAMPLING_PROGRESSIVE_NAPSAC: sampler = ProgressiveNapsac::create(state++, points_size, min_sample_size, layers, 20); break; case SamplingMethod::SAMPLING_NAPSAC: sampler = NapsacSampler::create(state++, points_size, min_sample_size, graph); break; default: CV_Error(cv::Error::StsNotImplemented, "Sampler is not implemented!"); } const bool is_sprt = params->getVerifier() == VerificationMethod::SPRT_VERIFIER || params->getVerifier() == VerificationMethod::ASPRT; if (is_sprt) verifier = AdaptiveSPRT::create(state++, quality, points_size, params->getScore() == ScoreMethod ::SCORE_METHOD_MAGSAC ? max_thr : threshold, params->getSPRTepsilon(), params->getSPRTdelta(), params->getTimeForModelEstimation(), params->getSPRTavgNumModels(), params->getScore(), k_mlesac, params->getVerifier() == VerificationMethod::ASPRT); else if (params->getVerifier() == VerificationMethod::NULL_VERIFIER) verifier = ModelVerifier::create(quality); else CV_Error(cv::Error::StsNotImplemented, "Verifier is not imeplemented!"); if (params->getSampler() == SamplingMethod::SAMPLING_PROSAC) { if (parallel_call) { termination = ProsacTerminationCriteria::create(nullptr, error, points_size, min_sample_size, params->getConfidence(), params->getMaxIters(), prosac_termination_length, 0.05, 0.05, threshold, _termination.dynamicCast()->getNonRandomInliers()); } else { termination = ProsacTerminationCriteria::create(sampler.dynamicCast(), error, points_size, min_sample_size, params->getConfidence(), params->getMaxIters(), prosac_termination_length, 0.05, 0.05, threshold, std::vector()); } } else if (params->getSampler() == SamplingMethod::SAMPLING_PROGRESSIVE_NAPSAC) { if (is_sprt) termination = SPRTPNapsacTermination::create(verifier.dynamicCast(), params->getConfidence(), points_size, min_sample_size, params->getMaxIters(), params->getRelaxCoef()); else termination = StandardTerminationCriteria::create (params->getConfidence(), points_size, min_sample_size, params->getMaxIters()); } else if (is_sprt && params->getLO() == LocalOptimMethod::LOCAL_OPTIM_NULL) { termination = SPRTTermination::create(verifier.dynamicCast(), params->getConfidence(), points_size, min_sample_size, params->getMaxIters()); } else { termination = StandardTerminationCriteria::create (params->getConfidence(), points_size, min_sample_size, params->getMaxIters()); } // if normal ransac or parallel call, avoid redundant init if ((! params->isParallel() || parallel_call) && params->getLO() != LocalOptimMethod::LOCAL_OPTIM_NULL) { lo_sampler = UniformRandomGenerator::create(state, points_size, params->getLOSampleSize()); const auto lo_termination = StandardTerminationCriteria::create(params->getConfidence(), points_size, min_sample_size, params->getMaxIters()); switch (params->getLO()) { case LocalOptimMethod::LOCAL_OPTIM_INNER_LO: case LocalOptimMethod::LOCAL_OPTIM_SIGMA: lo = SimpleLocalOptimization::create(quality, non_min_solver, lo_termination, lo_sampler, weight_fnc, params->getLOInnerMaxIters(), inner_inlier_thr_sqr, true); break; case LocalOptimMethod::LOCAL_OPTIM_INNER_AND_ITER_LO: lo = InnerIterativeLocalOptimization::create(estimator, quality, lo_sampler, points_size, threshold, true, params->getLOIterativeSampleSize(), params->getLOInnerMaxIters(), params->getLOIterativeMaxIters(), params->getLOThresholdMultiplier()); break; case LocalOptimMethod::LOCAL_OPTIM_GC: lo = GraphCut::create(estimator, quality, graph, lo_sampler, threshold, params->getGraphCutSpatialCoherenceTerm(), params->getLOInnerMaxIters(), lo_termination); break; default: CV_Error(cv::Error::StsNotImplemented , "Local Optimization is not implemented!"); } } } int getIndependentInliers (const Mat &model_, const std::vector &sample, std::vector &inliers, const int num_inliers_) { bool is_F = params->isFundamental(); Mat model = model_; int sample_size = 0; if (is_F) sample_size = 7; else if (params->isHomography()) sample_size = 4; else if (params->isEssential()) { is_F = true; // convert E to F model = Mat(Matx33d(K2).inv().t() * Matx33d(model) * Matx33d(K1).inv()); sample_size = 5; } else if (params->isPnP() || params->getEstimator() == EstimationMethod::AFFINE) sample_size = 3; else CV_Error(cv::Error::StsNotImplemented, "Method for independent inliers is not implemented for this problem"); if (num_inliers_ <= sample_size) return 0; // minimal sample size generates model model.convertTo(model, CV_32F); int num_inliers = num_inliers_, num_pts_near_ep = 0, num_pts_validatin_or_constr = 0, pt1 = 0; const auto * const pts = params->isEssential() ? (float *) image_points.data : (float *) points.data; // scale for thresholds should be used const float ep_thr_sqr = 0.000001f, line_thr = 0.01f, neigh_thr = 4.0f; float sign1=0,a1=0, b1=0, c1=0, a2=0, b2=0, c2=0, ep1_x, ep1_y, ep2_x, ep2_y; const auto * const m = (float *) model.data; Vec3f ep1; bool do_or_test = false, ep1_inf = false, ep2_inf = false; if (is_F) { // compute epipole and sign of the first point for orientation test model *= (1/norm(model)); ep1 = Utils::getRightEpipole(model); const Vec3f ep2 = Utils::getLeftEpipole(model); if (fabsf(ep1[2]) < DBL_EPSILON) { ep1_inf = true; } else { ep1_x = ep1[0] / ep1[2]; ep1_y = ep1[1] / ep1[2]; } if (fabsf(ep2[2]) < DBL_EPSILON) { ep2_inf = true; } else { ep2_x = ep2[0] / ep2[2]; ep2_y = ep2[1] / ep2[2]; } } const auto * const e1 = ep1.val; // of size 3x1 // we move sample points to the end, so every inlier will be checked by sample point int num_sample_in_inliers = 0; if (!sample.empty()) { num_sample_in_inliers = 0; int temp_idx = num_inliers; for (int i = 0; i < temp_idx; i++) { const int inl = inliers[i]; for (int s : sample) { if (inl == s) { std::swap(inliers[i], inliers[--temp_idx]); i--; // we need to check inlier that we just swapped num_sample_in_inliers++; break; } } } } if (is_F) { int MIN_TEST = std::min(15, num_inliers); for (int i = 0; i < MIN_TEST; i++) { pt1 = 4*inliers[i]; sign1 = (m[0]*pts[pt1+2]+m[3]*pts[pt1+3]+m[6])*(e1[1]-e1[2]*pts[pt1+1]); int validate = 0; for (int j = 0; j < MIN_TEST; j++) { if (i == j) continue; const int inl_idx = 4*inliers[j]; if (sign1*(m[0]*pts[inl_idx+2]+m[3]*pts[inl_idx+3]+m[6])*(e1[1]-e1[2]*pts[inl_idx+1])<0) validate++; } if (validate < MIN_TEST/2) { do_or_test = true; break; } } } // verification does not include sample points as they are surely random const int max_verify = num_inliers - num_sample_in_inliers; if (max_verify <= 0) return 0; int num_non_random_inliers = num_inliers - sample_size; auto removeDependentPoints = [&] (bool do_orient_test, bool check_epipoles) { for (int i = 0; i < max_verify; i++) { // checks over inliers if they are dependent to other inliers const int inl_idx = 4*inliers[i]; const auto x1 = pts[inl_idx], y1 = pts[inl_idx+1], x2 = pts[inl_idx+2], y2 = pts[inl_idx+3]; if (is_F) { // epipolar line on image 2 = l2 a2 = m[0] * x1 + m[1] * y1 + m[2]; b2 = m[3] * x1 + m[4] * y1 + m[5]; c2 = m[6] * x1 + m[7] * y1 + m[8]; // epipolar line on image 1 = l1 a1 = m[0] * x2 + m[3] * y2 + m[6]; b1 = m[1] * x2 + m[4] * y2 + m[7]; c1 = m[2] * x2 + m[5] * y2 + m[8]; if ((!ep1_inf && fabsf(x1-ep1_x)+fabsf(y1-ep1_y) < neigh_thr) || (!ep2_inf && fabsf(x2-ep2_x)+fabsf(y2-ep2_y) < neigh_thr)) { num_non_random_inliers--; num_pts_near_ep++; continue; // is dependent, continue to the next point } else if (check_epipoles) { if (a2 * a2 + b2 * b2 + c2 * c2 < ep_thr_sqr || a1 * a1 + b1 * b1 + c1 * c1 < ep_thr_sqr) { num_non_random_inliers--; num_pts_near_ep++; continue; // is dependent, continue to the next point } } else if (do_orient_test && pt1 != inl_idx && sign1*(m[0]*x2+m[3]*y2+m[6])*(e1[1]-e1[2]*y1)<0) { num_non_random_inliers--; num_pts_validatin_or_constr++; continue; } const auto mag2 = 1 / sqrt(a2 * a2 + b2 * b2), mag1 = 1/sqrt(a1 * a1 + b1 * b1); a2 *= mag2; b2 *= mag2; c2 *= mag2; a1 *= mag1; b1 *= mag1; c1 *= mag1; } for (int j = i+1; j < num_inliers; j++) {// verify through all including sample points const int inl_idx_j = 4*inliers[j]; const auto X1 = pts[inl_idx_j], Y1 = pts[inl_idx_j+1], X2 = pts[inl_idx_j+2], Y2 = pts[inl_idx_j+3]; // use L1 norm instead of L2 for faster evaluation if (fabsf(X1-x1) + fabsf(Y1 - y1) < neigh_thr || fabsf(X2-x2) + fabsf(Y2 - y2) < neigh_thr) { num_non_random_inliers--; // num_pts_bad_conditioning++; break; // is dependent stop verification } else if (is_F) { if (fabsf(a2 * X2 + b2 * Y2 + c2) < line_thr && //|| // xj'^T F xi fabsf(a1 * X1 + b1 * Y1 + c1) < line_thr) { // xj^T F^T xi' num_non_random_inliers--; break; // is dependent stop verification } } } } }; if (params->isPnP()) { for (int i = 0; i < max_verify; i++) { const int inl_idx = 5*inliers[i]; const auto x = pts[inl_idx], y = pts[inl_idx+1], X = pts[inl_idx+2], Y = pts[inl_idx+3], Z = pts[inl_idx+4]; for (int j = i+1; j < num_inliers; j++) { const int inl_idx_j = 5*inliers[j]; if (fabsf(x-pts[inl_idx_j ]) + fabsf(y-pts[inl_idx_j+1]) < neigh_thr || fabsf(X-pts[inl_idx_j+2]) + fabsf(Y-pts[inl_idx_j+3]) + fabsf(Z-pts[inl_idx_j+4]) < neigh_thr) { num_non_random_inliers--; break; } } } } else { removeDependentPoints(do_or_test, !ep1_inf && !ep2_inf); if (is_F) { const bool is_pts_vald_constr_normal = (double)num_pts_validatin_or_constr / num_inliers < 0.6; const bool is_pts_near_ep_normal = (double)num_pts_near_ep / num_inliers < 0.6; if (!is_pts_near_ep_normal || !is_pts_vald_constr_normal) { num_non_random_inliers = num_inliers-sample_size; num_pts_near_ep = 0; num_pts_validatin_or_constr = 0; removeDependentPoints(is_pts_vald_constr_normal, is_pts_near_ep_normal); } } } return num_non_random_inliers; } bool run(Ptr &ransac_output) { if (points_size < params->getSampleSize()) return false; const bool LO = params->getLO() != LocalOptimMethod::LOCAL_OPTIM_NULL, IS_FUNDAMENTAL = params->isFundamental(), IS_NON_RAND_TEST = params->isNonRandomnessTest(); const int MAX_MODELS_ADAPT = 21, MAX_ITERS_ADAPT = MAX_MODELS_ADAPT/*assume at least 1 model from 1 sample*/, sample_size = params->getSampleSize(); const double IOU_SIMILARITY_THR = 0.80; std::vector non_degen_sample, best_sample; double lambda_non_random_all_inliers = -1; int final_iters, num_total_tested_models = 0; // non-random const int MAX_TEST_MODELS_NONRAND = IS_NON_RAND_TEST ? MAX_MODELS_ADAPT : 0; std::vector models_for_random_test; models_for_random_test.reserve(MAX_TEST_MODELS_NONRAND); std::vector> samples_for_random_test; samples_for_random_test.reserve(MAX_TEST_MODELS_NONRAND); bool last_model_from_LO = false; Mat best_model, best_model_not_from_LO, K1_approx, K2_approx; Score best_score, best_score_model_not_from_LO; std::vector best_inliers_mask(points_size); if (! parallel) { // adaptive sprt test double IoU = 0, mean_num_est_models = 0; bool adapt = IS_NON_RAND_TEST || params->getVerifier() == VerificationMethod ::ASPRT, was_LO_run = false; int min_non_random_inliers = 30, iters = 0, num_estimations = 0, max_iters = params->getMaxIters(); Mat non_degenerate_model, lo_model; Score current_score, non_degenerate_model_score, best_score_sample; std::vector model_inliers_mask (points_size); std::vector models(_estimator->getMaxNumSolutions()); std::vector sample(_estimator->getMinimalSampleSize()), supports; supports.reserve(3*MAX_MODELS_ADAPT); // store model supports during adaption auto update_best = [&] (const Mat &new_model, const Score &new_score, bool from_lo=false) { _quality->getInliers(new_model, model_inliers_mask); IoU = Utils::intersectionOverUnion(best_inliers_mask, model_inliers_mask); best_inliers_mask = model_inliers_mask; if (!best_model.empty() && (int)models_for_random_test.size() < MAX_TEST_MODELS_NONRAND && IoU < IOU_SIMILARITY_THR && !from_lo) { // use IoU to not save similar models // save old best model for non-randomness test if necessary models_for_random_test.emplace_back(best_model.clone()); samples_for_random_test.emplace_back(best_sample); } // update score, model, inliers and max iterations best_score = new_score; new_model.copyTo(best_model); if (!from_lo) { best_sample = sample; if (IS_FUNDAMENTAL) { // avoid degeneracy after LO run // save last model not from LO best_model.copyTo(best_model_not_from_LO); best_score_model_not_from_LO = best_score; } } _model_verifier->update(best_score, iters); max_iters = _termination->update(best_model, best_score.inlier_number); // max_iters = std::max(max_iters, std::min(10, params->getMaxIters())); if (!adapt) // update quality and verifier to save evaluation time of a model _quality->setBestScore(best_score.score); last_model_from_LO = from_lo; }; auto run_lo = [&] (const Mat &_model, const Score &_score, bool force_lo) { was_LO_run = true; _local_optimization->setCurrentRANSACiter(force_lo ? iters : -1); Score lo_score; if (_local_optimization->refineModel(_model, _score, lo_model, lo_score) && lo_score.isBetter(best_score)) update_best(lo_model, lo_score, true); }; for (; iters < max_iters; iters++) { _sampler->generateSample(sample); int number_of_models; if (adapt) { number_of_models = _estimator->estimateModels(sample, models); mean_num_est_models += number_of_models; num_estimations++; } else { number_of_models = _estimator->estimateModels(sample, models); } for (int i = 0; i < number_of_models; i++) { num_total_tested_models++; if (adapt) { current_score = _quality->getScore(models[i]); supports.emplace_back(current_score.inlier_number); if (IS_NON_RAND_TEST && best_score_sample.isBetter(current_score)) { models_for_random_test.emplace_back(models[i].clone()); samples_for_random_test.emplace_back(sample); } } else { if (! _model_verifier->isModelGood(models[i], current_score)) continue; } if (current_score.isBetter(best_score_sample)) { if (_degeneracy->recoverIfDegenerate(sample, models[i], current_score, non_degenerate_model, non_degenerate_model_score)) { // check if best non degenerate model is better than so far the best model if (non_degenerate_model_score.isBetter(best_score)) { update_best(non_degenerate_model, non_degenerate_model_score); best_score_sample = current_score.isBetter(best_score) ? best_score : current_score; } else continue; } else { best_score_sample = current_score; update_best(models[i], current_score); } if (LO && ((iters < max_iters && best_score.inlier_number > min_non_random_inliers && IoU < IOU_SIMILARITY_THR))) run_lo(best_model, best_score, false); } // end of if so far the best score } // end loop of number of models if (adapt && iters >= MAX_ITERS_ADAPT && num_total_tested_models >= MAX_MODELS_ADAPT) { adapt = false; lambda_non_random_all_inliers = getLambda(supports, 2.32, points_size, sample_size, false, min_non_random_inliers); _model_verifier->updateSPRT(params->getTimeForModelEstimation(), 1.0, mean_num_est_models/num_estimations, lambda_non_random_all_inliers/points_size,(double)std::max(min_non_random_inliers, best_score.inlier_number)/points_size, best_score); } } // end main while loop final_iters = iters; if (! was_LO_run && !best_model.empty() && LO) run_lo(best_model, best_score, true); } else { // parallel VSAC const int MAX_THREADS = getNumThreads(), growth_max_samples = params->getProsacMaxSamples(); const bool is_prosac = params->getSampler() == SamplingMethod::SAMPLING_PROSAC; std::atomic_bool success(false); std::atomic_int num_hypothesis_tested(0), thread_cnt(0), max_number_inliers(0), subset_size, termination_length; std::atomic best_score_all(std::numeric_limits::max()); std::vector best_scores(MAX_THREADS), best_scores_not_LO; std::vector best_models(MAX_THREADS), best_models_not_LO, K1_apx, K2_apx; std::vector num_tested_models_threads(MAX_THREADS), growth_function, non_random_inliers; std::vector> tested_models_threads(MAX_THREADS); std::vector>> tested_samples_threads(MAX_THREADS); std::vector> best_samples_threads(MAX_THREADS); std::vector last_model_from_LO_vec; std::vector lambda_non_random_all_inliers_vec(MAX_THREADS); if (IS_FUNDAMENTAL) { last_model_from_LO_vec = std::vector(MAX_THREADS); best_models_not_LO = std::vector(MAX_THREADS); best_scores_not_LO = std::vector(MAX_THREADS); K1_apx = std::vector(MAX_THREADS); K2_apx = std::vector(MAX_THREADS); } if (is_prosac) { growth_function = _sampler.dynamicCast()->getGrowthFunction(); subset_size = 2*sample_size; // n, size of the current sampling pool termination_length = points_size; } /////////////////////////////////////////////////////////////////////////////////////////////////////// parallel_for_(Range(0, MAX_THREADS), [&](const Range & /*range*/) { if (!success) { // cover all if not success to avoid thread creating new variables const int thread_rng_id = thread_cnt++; bool adapt = params->getVerifier() == VerificationMethod ::ASPRT || IS_NON_RAND_TEST; int thread_state = _state + thread_rng_id, min_non_random_inliers = 0, num_tested_models = 0, num_estimations = 0, mean_num_est_models = 0, iters, max_iters = params->getMaxIters(); double IoU = 0, lambda_non_random_all_inliers_thread = -1; std::vector tested_models_thread; tested_models_thread.reserve(MAX_TEST_MODELS_NONRAND); std::vector> tested_samples_thread; tested_samples_thread.reserve(MAX_TEST_MODELS_NONRAND); Ptr random_gen; if (is_prosac) random_gen = UniformRandomGenerator::create(thread_state); Ptr error; Ptr estimator; Ptr degeneracy; Ptr quality; Ptr model_verifier; Ptr sampler; Ptr lo_sampler; Ptr termination; Ptr local_optimization; Ptr min_solver; Ptr non_min_solver; Ptr weight_fnc; initialize (thread_state, min_solver, non_min_solver, error, estimator, degeneracy, quality, model_verifier, local_optimization, termination, sampler, lo_sampler, weight_fnc, true); bool is_last_from_LO_thread = false; Mat best_model_thread, non_degenerate_model, lo_model, best_not_LO_thread; Score best_score_thread, current_score, non_denegenerate_model_score, lo_score,best_score_all_threads, best_not_LO_score_thread; std::vector sample(estimator->getMinimalSampleSize()), best_sample_thread, supports; supports.reserve(3*MAX_MODELS_ADAPT); // store model supports std::vector best_inliers_mask_local(points_size, false), model_inliers_mask(points_size, false); std::vector models(estimator->getMaxNumSolutions()); auto update_best = [&] (const Score &new_score, const Mat &new_model, bool from_LO=false) { // update best score of all threads if (max_number_inliers < new_score.inlier_number) max_number_inliers = new_score.inlier_number; if (best_score_all > new_score.score) best_score_all = new_score.score; best_score_all_threads = Score(max_number_inliers, best_score_all); // quality->getInliers(new_model, model_inliers_mask); IoU = Utils::intersectionOverUnion(best_inliers_mask_local, model_inliers_mask); if (!best_model_thread.empty() && (int)tested_models_thread.size() < MAX_TEST_MODELS_NONRAND && IoU < IOU_SIMILARITY_THR) { tested_models_thread.emplace_back(best_model_thread.clone()); tested_samples_thread.emplace_back(best_sample_thread); } if (!adapt) { // update quality and verifier quality->setBestScore(best_score_all); model_verifier->update(best_score_all_threads, iters); } // copy new score to best score best_score_thread = new_score; best_sample_thread = sample; best_inliers_mask_local = model_inliers_mask; // remember best model new_model.copyTo(best_model_thread); // update upper bound of iterations if (is_prosac) { int new_termination_length; max_iters = termination.dynamicCast()-> updateTerminationLength(best_model_thread, best_score_thread.inlier_number, new_termination_length); // update termination length if (new_termination_length < termination_length) termination_length = new_termination_length; } else max_iters = termination->update(best_model_thread, max_number_inliers); if (IS_FUNDAMENTAL) { is_last_from_LO_thread = from_LO; if (!from_LO) { best_model_thread.copyTo(best_not_LO_thread); best_not_LO_score_thread = best_score_thread; } } }; bool was_LO_run = false; auto runLO = [&] (int current_ransac_iters) { was_LO_run = true; local_optimization->setCurrentRANSACiter(current_ransac_iters); if (local_optimization->refineModel(best_model_thread, best_score_thread, lo_model, lo_score) && lo_score.isBetter(best_score_thread)) update_best(lo_score, lo_model, true); }; for (iters = 0; iters < max_iters && !success; iters++) { success = num_hypothesis_tested++ > max_iters; if (iters % 10 && !adapt) { // Synchronize threads. just to speed verification of model. quality->setBestScore(std::min(best_score_thread.score, (double)best_score_all)); model_verifier->update(best_score_thread.inlier_number > max_number_inliers ? best_score_thread : best_score_all_threads, iters); } if (is_prosac) { if (num_hypothesis_tested > growth_max_samples) { // if PROSAC has not converged to solution then do uniform sampling. random_gen->generateUniqueRandomSet(sample, sample_size, points_size); } else { if (num_hypothesis_tested >= growth_function[subset_size-1] && subset_size < termination_length-MAX_THREADS) { subset_size++; if (subset_size >= points_size) subset_size = points_size-1; } if (growth_function[subset_size-1] < num_hypothesis_tested) { // The sample contains m-1 points selected from U_(n-1) at random and u_n random_gen->generateUniqueRandomSet(sample, sample_size-1, subset_size-1); sample[sample_size-1] = subset_size-1; } else // Select m points from U_n at random. random_gen->generateUniqueRandomSet(sample, sample_size, subset_size); } } else sampler->generateSample(sample); // use local sampler const int number_of_models = estimator->estimateModels(sample, models); if (adapt) { num_estimations++; mean_num_est_models += number_of_models; } for (int i = 0; i < number_of_models; i++) { num_tested_models++; if (adapt) { current_score = quality->getScore(models[i]); supports.emplace_back(current_score.inlier_number); } else if (! model_verifier->isModelGood(models[i], current_score)) continue; if (current_score.isBetter(best_score_all_threads)) { if (degeneracy->recoverIfDegenerate(sample, models[i], current_score, non_degenerate_model, non_denegenerate_model_score)) { // check if best non degenerate model is better than so far the best model if (non_denegenerate_model_score.isBetter(best_score_thread)) update_best(non_denegenerate_model_score, non_degenerate_model); else continue; } else update_best(current_score, models[i]); if (LO && num_hypothesis_tested < max_iters && IoU < IOU_SIMILARITY_THR && best_score_thread.inlier_number > min_non_random_inliers) runLO(iters); } // end of if so far the best score else if ((int)tested_models_thread.size() < MAX_TEST_MODELS_NONRAND) { tested_models_thread.emplace_back(models[i].clone()); tested_samples_thread.emplace_back(sample); } if (num_hypothesis_tested > max_iters) { success = true; break; } } // end loop of number of models if (adapt && iters >= MAX_ITERS_ADAPT && num_tested_models >= MAX_MODELS_ADAPT) { adapt = false; lambda_non_random_all_inliers_thread = getLambda(supports, 2.32, points_size, sample_size, false, min_non_random_inliers); model_verifier->updateSPRT(params->getTimeForModelEstimation(), 1, (double)mean_num_est_models/num_estimations, lambda_non_random_all_inliers_thread/points_size, (double)std::max(min_non_random_inliers, best_score.inlier_number)/points_size, best_score_all_threads); } if (!adapt && LO && num_hypothesis_tested < max_iters && !was_LO_run && !best_model_thread.empty() && best_score_thread.inlier_number > min_non_random_inliers) runLO(iters); } // end of loop over iters if (! was_LO_run && !best_model_thread.empty() && LO) runLO(-1 /*use full iterations of LO*/); best_model_thread.copyTo(best_models[thread_rng_id]); best_scores[thread_rng_id] = best_score_thread; num_tested_models_threads[thread_rng_id] = num_tested_models; tested_models_threads[thread_rng_id] = tested_models_thread; tested_samples_threads[thread_rng_id] = tested_samples_thread; best_samples_threads[thread_rng_id] = best_sample_thread; if (IS_FUNDAMENTAL) { best_scores_not_LO[thread_rng_id] = best_not_LO_score_thread; best_not_LO_thread.copyTo(best_models_not_LO[thread_rng_id]); last_model_from_LO_vec[thread_rng_id] = is_last_from_LO_thread; } lambda_non_random_all_inliers_vec[thread_rng_id] = lambda_non_random_all_inliers_thread; }}); // end parallel /////////////////////////////////////////////////////////////////////////////////////////////////////// // find best model from all threads' models best_score = best_scores[0]; int best_thread_idx = 0; for (int i = 1; i < MAX_THREADS; i++) if (best_scores[i].isBetter(best_score)) { best_score = best_scores[i]; best_thread_idx = i; } best_model = best_models[best_thread_idx]; if (IS_FUNDAMENTAL) { last_model_from_LO = last_model_from_LO_vec[best_thread_idx]; K1_approx = K1_apx[best_thread_idx]; K2_approx = K2_apx[best_thread_idx]; } final_iters = num_hypothesis_tested; best_sample = best_samples_threads[best_thread_idx]; int num_lambdas = 0; double avg_lambda = 0; for (int i = 0; i < MAX_THREADS; i++) { if (IS_FUNDAMENTAL && best_scores_not_LO[i].isBetter(best_score_model_not_from_LO)) { best_score_model_not_from_LO = best_scores_not_LO[i]; best_models_not_LO[i].copyTo(best_model_not_from_LO); } if (IS_NON_RAND_TEST && lambda_non_random_all_inliers_vec[i] > 0) { num_lambdas ++; avg_lambda += lambda_non_random_all_inliers_vec[i]; } num_total_tested_models += num_tested_models_threads[i]; if ((int)models_for_random_test.size() < MAX_TEST_MODELS_NONRAND) { for (int m = 0; m < (int)tested_models_threads[i].size(); m++) { models_for_random_test.emplace_back(tested_models_threads[i][m].clone()); samples_for_random_test.emplace_back(tested_samples_threads[i][m]); if ((int)models_for_random_test.size() == MAX_TEST_MODELS_NONRAND) break; } } } if (IS_NON_RAND_TEST && num_lambdas > 0 && avg_lambda > 0) lambda_non_random_all_inliers = avg_lambda / num_lambdas; } if (best_model.empty()) { ransac_output = RansacOutput::create(best_model, std::vector(), best_score.inlier_number, final_iters, ModelConfidence::RANDOM, std::vector()); return false; } if (last_model_from_LO && IS_FUNDAMENTAL && K1.empty() && K2.empty()) { Score new_score; Mat new_model; const double INL_THR = 0.80; if (parallel) _quality->getInliers(best_model, best_inliers_mask); // run additional degeneracy check for F: if (_degeneracy.dynamicCast()->verifyFundamental(best_model, best_score, best_inliers_mask, new_model, new_score)) { // so-far-the-best F is degenerate // Update best F using non-degenerate F or the one which is not from LO if (new_score.isBetter(best_score_model_not_from_LO) && new_score.inlier_number > INL_THR*best_score.inlier_number) { best_score = new_score; new_model.copyTo(best_model); } else if (best_score_model_not_from_LO.inlier_number > INL_THR*best_score.inlier_number) { best_score = best_score_model_not_from_LO; best_model_not_from_LO.copyTo(best_model); } } else { // so-far-the-best F is not degenerate if (new_score.isBetter(best_score)) { // if new model is better then update best_score = new_score; new_model.copyTo(best_model); } } } if (params->getFinalPolisher() != PolishingMethod::NONE_POLISHER) { Mat polished_model; Score polisher_score; if (polisher->polishSoFarTheBestModel(best_model, best_score, // polish final model polished_model, polisher_score) && polisher_score.isBetter(best_score)) { best_score = polisher_score; polished_model.copyTo(best_model); } } ///////////////// get inliers of the best model and points' residuals /////////////// std::vector inliers_mask; std::vector residuals; if (params->isMaskRequired()) { inliers_mask = std::vector(points_size); residuals = _error->getErrors(best_model); _quality->getInliers(residuals, inliers_mask, threshold); } ModelConfidence model_conf = ModelConfidence::UNKNOWN; if (IS_NON_RAND_TEST) { std::vector temp_inliers(points_size); const int non_random_inls_best_model = getIndependentInliers(best_model, best_sample, temp_inliers, _quality->getInliers(best_model, temp_inliers)); // quick test on lambda from all inliers (= upper bound of independent inliers) // if model with independent inliers is not random for Poisson with all inliers then it is not random using independent inliers too if (pow(Utils::getPoissonCDF(lambda_non_random_all_inliers, non_random_inls_best_model), num_total_tested_models) < 0.9999) { std::vector inliers_list(models_for_random_test.size()); for (int m = 0; m < (int)models_for_random_test.size(); m++) inliers_list[m] = getIndependentInliers(models_for_random_test[m], samples_for_random_test[m], temp_inliers, _quality->getInliers(models_for_random_test[m], temp_inliers)); int min_non_rand_inliers; const double lambda = getLambda(inliers_list, 1.644, points_size, sample_size, true, min_non_rand_inliers); const double cdf_lambda = Utils::getPoissonCDF(lambda, non_random_inls_best_model), cdf_N = pow(cdf_lambda, num_total_tested_models); model_conf = cdf_N < 0.9999 ? ModelConfidence ::RANDOM : ModelConfidence ::NON_RANDOM; } else model_conf = ModelConfidence ::NON_RANDOM; } ransac_output = RansacOutput::create(best_model, inliers_mask, best_score.inlier_number, final_iters, model_conf, residuals); return true; } }; /* * pts1, pts2 are matrices either N x a, N x b or a x N or b x N, where N > a and N > b * pts1 are image points, if pnp pts2 are object points otherwise - image points as well. * output is matrix of size N x (a + b) * return points_size = N */ int mergePoints (InputArray pts1_, InputArray pts2_, Mat &pts, bool ispnp) { Mat pts1 = pts1_.getMat(), pts2 = pts2_.getMat(); auto convertPoints = [] (Mat &points, int pt_dim) { points.convertTo(points, CV_32F); // convert points to have float precision if (points.channels() > 1) points = points.reshape(1, (int)points.total()); // convert point to have 1 channel if (points.rows < points.cols) transpose(points, points); // transpose so points will be in rows CV_CheckGE(points.cols, pt_dim, "Invalid dimension of point"); if (points.cols != pt_dim) // in case when image points are 3D convert them to 2D points = points.colRange(0, pt_dim); }; convertPoints(pts1, 2); // pts1 are always image points convertPoints(pts2, ispnp ? 3 : 2); // for PnP points are 3D // points are of size [Nx2 Nx2] = Nx4 for H, F, E // points are of size [Nx2 Nx3] = Nx5 for PnP hconcat(pts1, pts2, pts); return pts.rows; } void saveMask (OutputArray mask, const std::vector &inliers_mask) { if (mask.needed()) { const int points_size = (int) inliers_mask.size(); Mat tmp_mask(points_size, 1, CV_8U); auto * maskptr = tmp_mask.ptr(); for (int i = 0; i < points_size; i++) maskptr[i] = (uchar) inliers_mask[i]; tmp_mask.copyTo(mask); } } void setParameters (Ptr ¶ms, EstimationMethod estimator, const UsacParams &usac_params, bool mask_needed) { params = Model::create(usac_params.threshold, estimator, usac_params.sampler, usac_params.confidence, usac_params.maxIterations, usac_params.score); params->setLocalOptimization(usac_params.loMethod); params->setLOSampleSize(usac_params.loSampleSize); params->setLOIterations(usac_params.loIterations); params->setParallel(usac_params.isParallel); params->setNeighborsType(usac_params.neighborsSearch); params->setRandomGeneratorState(usac_params.randomGeneratorState); params->maskRequired(mask_needed); } void setParameters (int flag, Ptr ¶ms, EstimationMethod estimator, double thr, int max_iters, double conf, bool mask_needed) { switch (flag) { case USAC_DEFAULT: params = Model::create(thr, estimator, SamplingMethod::SAMPLING_UNIFORM, conf, max_iters, ScoreMethod::SCORE_METHOD_MSAC); params->setLocalOptimization(LocalOptimMethod ::LOCAL_OPTIM_INNER_AND_ITER_LO); break; case USAC_MAGSAC: params = Model::create(thr, estimator, SamplingMethod::SAMPLING_UNIFORM, conf, max_iters, ScoreMethod::SCORE_METHOD_MAGSAC); params->setLocalOptimization(LocalOptimMethod ::LOCAL_OPTIM_SIGMA); params->setLOSampleSize(params->isHomography() ? 75 : 50); params->setLOIterations(params->isHomography() ? 15 : 10); break; case USAC_PARALLEL: params = Model::create(thr, estimator, SamplingMethod::SAMPLING_UNIFORM, conf, max_iters, ScoreMethod::SCORE_METHOD_MSAC); params->setParallel(true); params->setLocalOptimization(LocalOptimMethod ::LOCAL_OPTIM_INNER_LO); break; case USAC_ACCURATE: params = Model::create(thr, estimator, SamplingMethod::SAMPLING_UNIFORM, conf, max_iters, ScoreMethod::SCORE_METHOD_MSAC); params->setLocalOptimization(LocalOptimMethod ::LOCAL_OPTIM_GC); params->setLOSampleSize(20); params->setLOIterations(25); break; case USAC_FAST: params = Model::create(thr, estimator, SamplingMethod::SAMPLING_UNIFORM, conf, max_iters, ScoreMethod::SCORE_METHOD_MSAC); params->setLocalOptimization(LocalOptimMethod ::LOCAL_OPTIM_INNER_AND_ITER_LO); params->setLOIterations(5); params->setLOIterativeIters(3); break; case USAC_PROSAC: params = Model::create(thr, estimator, SamplingMethod::SAMPLING_PROSAC, conf, max_iters, ScoreMethod::SCORE_METHOD_MSAC); params->setLocalOptimization(LocalOptimMethod ::LOCAL_OPTIM_INNER_LO); break; case USAC_FM_8PTS: params = Model::create(thr, EstimationMethod::FUNDAMENTAL8,SamplingMethod::SAMPLING_UNIFORM, conf, max_iters,ScoreMethod::SCORE_METHOD_MSAC); params->setLocalOptimization(LocalOptimMethod ::LOCAL_OPTIM_INNER_LO); break; default: CV_Error(cv::Error::StsBadFlag, "Incorrect flag for USAC!"); } // do not do too many iterations for PnP if (estimator == EstimationMethod::P3P) { if (params->getLOInnerMaxIters() > 10) params->setLOIterations(10); params->setLOIterativeIters(0); params->setFinalLSQ(3); } params->maskRequired(mask_needed); } Mat findHomography (InputArray srcPoints, InputArray dstPoints, int method, double thr, OutputArray mask, const int max_iters, const double confidence) { Ptr params; setParameters(method, params, EstimationMethod::HOMOGRAPHY, thr, max_iters, confidence, mask.needed()); Ptr ransac_output; if (run(params, srcPoints, dstPoints, ransac_output, noArray(), noArray(), noArray(), noArray())) { saveMask(mask, ransac_output->getInliersMask()); return ransac_output->getModel() / ransac_output->getModel().at(2,2); } if (mask.needed()){ mask.create(std::max(srcPoints.getMat().rows, srcPoints.getMat().cols), 1, CV_8U); mask.setTo(Scalar::all(0)); } return Mat(); } Mat findFundamentalMat( InputArray points1, InputArray points2, int method, double thr, double confidence, int max_iters, OutputArray mask ) { Ptr params; setParameters(method, params, EstimationMethod::FUNDAMENTAL, thr, max_iters, confidence, mask.needed()); Ptr ransac_output; if (run(params, points1, points2, ransac_output, noArray(), noArray(), noArray(), noArray())) { saveMask(mask, ransac_output->getInliersMask()); return ransac_output->getModel(); } if (mask.needed()){ mask.create(std::max(points1.getMat().rows, points1.getMat().cols), 1, CV_8U); mask.setTo(Scalar::all(0)); } return Mat(); } Mat findEssentialMat (InputArray points1, InputArray points2, InputArray cameraMatrix1, int method, double prob, double thr, OutputArray mask, int maxIters) { Ptr params; setParameters(method, params, EstimationMethod::ESSENTIAL, thr, maxIters, prob, mask.needed()); Ptr ransac_output; if (run(params, points1, points2, ransac_output, cameraMatrix1, cameraMatrix1, noArray(), noArray())) { saveMask(mask, ransac_output->getInliersMask()); return ransac_output->getModel(); } if (mask.needed()){ mask.create(std::max(points1.getMat().rows, points1.getMat().cols), 1, CV_8U); mask.setTo(Scalar::all(0)); } return Mat(); } bool solvePnPRansac( InputArray objectPoints, InputArray imagePoints, InputArray cameraMatrix, InputArray distCoeffs, OutputArray rvec, OutputArray tvec, bool /*useExtrinsicGuess*/, int max_iters, float thr, double conf, OutputArray inliers, int method) { Ptr params; setParameters(method, params, cameraMatrix.empty() ? EstimationMethod ::P6P : EstimationMethod ::P3P, thr, max_iters, conf, inliers.needed()); Ptr ransac_output; if (run(params, imagePoints, objectPoints, ransac_output, cameraMatrix, noArray(), distCoeffs, noArray())) { if (inliers.needed()) { const auto &inliers_mask = ransac_output->getInliersMask(); Mat inliers_; for (int i = 0; i < (int)inliers_mask.size(); i++) if (inliers_mask[i]) inliers_.push_back(i); inliers_.copyTo(inliers); } const Mat &model = ransac_output->getModel(); model.col(0).copyTo(rvec); model.col(1).copyTo(tvec); return true; } return false; } Mat estimateAffine2D(InputArray from, InputArray to, OutputArray mask, int method, double thr, int max_iters, double conf, int /*refineIters*/) { Ptr params; setParameters(method, params, EstimationMethod::AFFINE, thr, max_iters, conf, mask.needed()); Ptr ransac_output; if (run(params, from, to, ransac_output, noArray(), noArray(), noArray(), noArray())) { saveMask(mask, ransac_output->getInliersMask()); return ransac_output->getModel().rowRange(0,2); } if (mask.needed()){ mask.create(std::max(from.getMat().rows, from.getMat().cols), 1, CV_8U); mask.setTo(Scalar::all(0)); } return Mat(); } class ModelImpl : public Model { private: // main parameters: double threshold; EstimationMethod estimator; SamplingMethod sampler; double confidence; int max_iterations; ScoreMethod score; int sample_size; // Larsson parameters bool is_larsson_optimization = true; int larsson_leven_marq_iters_lo = 10, larsson_leven_marq_iters_fo = 15; // solver for a null-space extraction MethodSolver null_solver = GEM_SOLVER; // prosac int prosac_max_samples = 200000; // for neighborhood graph int k_nearest_neighbors = 8;//, flann_search_params = 5, num_kd_trees = 1; // for FLANN int cell_size = 50; // pixels, for grid neighbors searching int radius = 30; // pixels, for radius-search neighborhood graph NeighborSearchMethod neighborsType = NeighborSearchMethod::NEIGH_GRID; // Local Optimization parameters LocalOptimMethod lo = LocalOptimMethod ::LOCAL_OPTIM_INNER_LO; int lo_sample_size=12, lo_inner_iterations=20, lo_iterative_iterations=8, lo_thr_multiplier=10, lo_iter_sample_size = 30; // Graph cut parameters const double spatial_coherence_term = 0.975; // apply polisher for final RANSAC model PolishingMethod polisher = PolishingMethod ::COV_POLISHER; // preemptive verification test VerificationMethod verifier = VerificationMethod ::ASPRT; // sprt parameters // lower bound estimate is 2% of inliers // model estimation to verification time = ratio of time needed to estimate model // to verification of one point wrt the model double sprt_eps = 0.02, sprt_delta = 0.008, avg_num_models, model_est_to_ver_time; // estimator error ErrorMetric est_error; // progressive napsac double relax_coef = 0.1; // for building neighborhood graphs const std::vector grid_cell_number = {10, 5, 2}; //for final least squares polisher int final_lsq_iters = 7; bool need_mask = true, // do we need inlier mask in the end is_parallel = false, // use parallel RANSAC is_nonrand_test = false; // is test for the final model non-randomness // state of pseudo-random number generator int random_generator_state = 0; // number of iterations of plane-and-parallax in DEGENSAC^+ int plane_and_parallax_max_iters = 300; // magsac parameters: int DoF = 2; double sigma_quantile = 3.04, upper_incomplete_of_sigma_quantile = 0.00419, lower_incomplete_of_sigma_quantile = 0.8629, C = 0.5, maximum_thr = 7.5; double k_mlesac = 2.25; // parameter for MLESAC model evaluation public: ModelImpl (double threshold_, EstimationMethod estimator_, SamplingMethod sampler_, double confidence_, int max_iterations_, ScoreMethod score_) : threshold(threshold_), estimator(estimator_), sampler(sampler_), confidence(confidence_), max_iterations(max_iterations_), score(score_) { switch (estimator_) { case (EstimationMethod::AFFINE): avg_num_models = 1; model_est_to_ver_time = 50; sample_size = 3; est_error = ErrorMetric ::FORW_REPR_ERR; break; case (EstimationMethod::HOMOGRAPHY): avg_num_models = 0.8; model_est_to_ver_time = 200; sample_size = 4; est_error = ErrorMetric ::FORW_REPR_ERR; break; case (EstimationMethod::FUNDAMENTAL): DoF = 4; C = 0.25; sigma_quantile = 3.64, upper_incomplete_of_sigma_quantile = 0.003657; lower_incomplete_of_sigma_quantile = 1.3012; maximum_thr = 2.5; avg_num_models = 1.5; model_est_to_ver_time = 200; sample_size = 7; est_error = ErrorMetric ::SAMPSON_ERR; break; case (EstimationMethod::FUNDAMENTAL8): avg_num_models = 1; model_est_to_ver_time = 100; maximum_thr = 2.5; sample_size = 8; est_error = ErrorMetric ::SAMPSON_ERR; break; case (EstimationMethod::ESSENTIAL): DoF = 4; C = 0.25; sigma_quantile = 3.64, upper_incomplete_of_sigma_quantile = 0.003657; lower_incomplete_of_sigma_quantile = 1.3012; avg_num_models = 3.93; model_est_to_ver_time = 1000; maximum_thr = 2; sample_size = 5; est_error = ErrorMetric ::SAMPSON_ERR; break; case (EstimationMethod::P3P): avg_num_models = 1.38; model_est_to_ver_time = 800; sample_size = 3; est_error = ErrorMetric ::RERPOJ; break; case (EstimationMethod::P6P): avg_num_models = 1; model_est_to_ver_time = 300; sample_size = 6; est_error = ErrorMetric ::RERPOJ; break; default: CV_Error(cv::Error::StsNotImplemented, "Estimator has not implemented yet!"); } if (score_ == ScoreMethod::SCORE_METHOD_MAGSAC) polisher = PolishingMethod::MAGSAC; // for PnP problem we can use only KNN graph if (estimator_ == EstimationMethod::P3P || estimator_ == EstimationMethod::P6P) { polisher = LSQ_POLISHER; neighborsType = NeighborSearchMethod::NEIGH_FLANN_KNN; k_nearest_neighbors = 2; } } // setters void setNonRandomnessTest (bool set) override { is_nonrand_test = set; } void setVerifier (VerificationMethod verifier_) override { verifier = verifier_; } void setPolisher (PolishingMethod polisher_) override { polisher = polisher_; } void setParallel (bool is_parallel_) override { is_parallel = is_parallel_; } void setError (ErrorMetric error_) override { est_error = error_; } void setLocalOptimization (LocalOptimMethod lo_) override { lo = lo_; } void setKNearestNeighhbors (int knn_) override { k_nearest_neighbors = knn_; } void setNeighborsType (NeighborSearchMethod neighbors) override { neighborsType = neighbors; } void setCellSize (int cell_size_) override { cell_size = cell_size_; } void setLOIterations (int iters) override { lo_inner_iterations = iters; } void setLOSampleSize (int lo_sample_size_) override { lo_sample_size = lo_sample_size_; } void maskRequired (bool need_mask_) override { need_mask = need_mask_; } void setRandomGeneratorState (int state) override { random_generator_state = state; } void setLOIterativeIters (int iters) override { lo_iterative_iterations = iters; } void setFinalLSQ (int iters) override { final_lsq_iters = iters; } // getters int getProsacMaxSamples() const override { return prosac_max_samples; } int getLevMarqIters () const override { return larsson_leven_marq_iters_fo; } int getLevMarqItersLO () const override { return larsson_leven_marq_iters_lo; } bool isNonRandomnessTest () const override { return is_nonrand_test; } bool isMaskRequired () const override { return need_mask; } NeighborSearchMethod getNeighborsSearch () const override { return neighborsType; } int getKNN () const override { return k_nearest_neighbors; } ErrorMetric getError () const override { return est_error; } EstimationMethod getEstimator () const override { return estimator; } int getSampleSize () const override { return sample_size; } int getFinalLSQIterations () const override { return final_lsq_iters; } int getDegreesOfFreedom () const override { return DoF; } double getSigmaQuantile () const override { return sigma_quantile; } double getUpperIncompleteOfSigmaQuantile () const override { return upper_incomplete_of_sigma_quantile; } double getLowerIncompleteOfSigmaQuantile () const override { return lower_incomplete_of_sigma_quantile; } double getC () const override { return C; } double getKmlesac () const override { return k_mlesac; } double getMaximumThreshold () const override { return maximum_thr; } double getGraphCutSpatialCoherenceTerm () const override { return spatial_coherence_term; } int getLOSampleSize () const override { return lo_sample_size; } MethodSolver getRansacSolver () const override { return null_solver; } PolishingMethod getFinalPolisher () const override { return polisher; } int getLOThresholdMultiplier() const override { return lo_thr_multiplier; } int getLOIterativeSampleSize() const override { return lo_iter_sample_size; } int getLOIterativeMaxIters() const override { return lo_iterative_iterations; } int getLOInnerMaxIters() const override { return lo_inner_iterations; } int getPlaneAndParallaxIters () const override { return plane_and_parallax_max_iters; } LocalOptimMethod getLO () const override { return lo; } ScoreMethod getScore () const override { return score; } int getMaxIters () const override { return max_iterations; } double getConfidence () const override { return confidence; } double getThreshold () const override { return threshold; } VerificationMethod getVerifier () const override { return verifier; } SamplingMethod getSampler () const override { return sampler; } int getRandomGeneratorState () const override { return random_generator_state; } double getSPRTdelta () const override { return sprt_delta; } double getSPRTepsilon () const override { return sprt_eps; } double getSPRTavgNumModels () const override { return avg_num_models; } int getCellSize () const override { return cell_size; } int getGraphRadius() const override { return radius; } double getTimeForModelEstimation () const override { return model_est_to_ver_time; } double getRelaxCoef () const override { return relax_coef; } const std::vector &getGridCellNumber () const override { return grid_cell_number; } bool isLarssonOptimization () const override { return is_larsson_optimization; } bool isParallel () const override { return is_parallel; } bool isFundamental () const override { return estimator == EstimationMethod::FUNDAMENTAL || estimator == EstimationMethod::FUNDAMENTAL8; } bool isHomography () const override { return estimator == EstimationMethod::HOMOGRAPHY; } bool isEssential () const override { return estimator == EstimationMethod::ESSENTIAL; } bool isPnP() const override { return estimator == EstimationMethod ::P3P || estimator == EstimationMethod ::P6P; } }; Ptr Model::create(double threshold_, EstimationMethod estimator_, SamplingMethod sampler_, double confidence_, int max_iterations_, ScoreMethod score_) { return makePtr(threshold_, estimator_, sampler_, confidence_, max_iterations_, score_); } bool run (const Ptr ¶ms, InputArray points1, InputArray points2, Ptr &ransac_output, InputArray K1_, InputArray K2_, InputArray dist_coeff1, InputArray dist_coeff2) { Ransac ransac (params, points1, points2, K1_, K2_, dist_coeff1, dist_coeff2); if (ransac.run(ransac_output)) { if (params->isPnP()) { // convert R to rodrigues and back and recalculate inliers which due to numerical // issues can differ Mat out, newP; Matx33d R, newR, K1; Vec3d t, rvec; if (K1_.empty()) { usac::Utils::decomposeProjection (ransac_output->getModel(), K1, R, t); Rodrigues(R, rvec); hconcat(rvec, t, out); hconcat(out, K1, out); } else { K1 = ransac.K1; const Mat Rt = Mat(Matx33d(K1).inv() * Matx34d(ransac_output->getModel())); t = Rt.col(3); Rodrigues(Rt.colRange(0,3), rvec); hconcat(rvec, t, out); } // Matx33d _K1(K1); Rodrigues(rvec, newR); hconcat(K1 * Matx33d(newR), K1 * Vec3d(t), newP); std::vector inliers_mask(ransac.points_size); ransac._quality->getInliers(newP, inliers_mask); ransac_output = RansacOutput::create(out, inliers_mask, ransac_output->getNumberOfInliers(), ransac_output->getNumberOfIters(), ransac_output->getConfidence(), ransac_output->getResiduals()); } return true; } return false; } }}