/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7) static IppStatus sts = ippInit(); #endif /****************************************************************************************\ Sobel & Scharr Derivative Filters \****************************************************************************************/ namespace cv { static void getScharrKernels( OutputArray _kx, OutputArray _ky, int dx, int dy, bool normalize, int ktype ) { const int ksize = 3; CV_Assert( ktype == CV_32F || ktype == CV_64F ); _kx.create(ksize, 1, ktype, -1, true); _ky.create(ksize, 1, ktype, -1, true); Mat kx = _kx.getMat(); Mat ky = _ky.getMat(); CV_Assert( dx >= 0 && dy >= 0 && dx+dy == 1 ); for( int k = 0; k < 2; k++ ) { Mat* kernel = k == 0 ? &kx : &ky; int order = k == 0 ? dx : dy; int kerI[3]; if( order == 0 ) kerI[0] = 3, kerI[1] = 10, kerI[2] = 3; else if( order == 1 ) kerI[0] = -1, kerI[1] = 0, kerI[2] = 1; Mat temp(kernel->rows, kernel->cols, CV_32S, &kerI[0]); double scale = !normalize || order == 1 ? 1. : 1./32; temp.convertTo(*kernel, ktype, scale); } } static void getSobelKernels( OutputArray _kx, OutputArray _ky, int dx, int dy, int _ksize, bool normalize, int ktype ) { int i, j, ksizeX = _ksize, ksizeY = _ksize; if( ksizeX == 1 && dx > 0 ) ksizeX = 3; if( ksizeY == 1 && dy > 0 ) ksizeY = 3; CV_Assert( ktype == CV_32F || ktype == CV_64F ); _kx.create(ksizeX, 1, ktype, -1, true); _ky.create(ksizeY, 1, ktype, -1, true); Mat kx = _kx.getMat(); Mat ky = _ky.getMat(); if( _ksize % 2 == 0 || _ksize > 31 ) CV_Error( CV_StsOutOfRange, "The kernel size must be odd and not larger than 31" ); vector kerI(std::max(ksizeX, ksizeY) + 1); CV_Assert( dx >= 0 && dy >= 0 && dx+dy > 0 ); for( int k = 0; k < 2; k++ ) { Mat* kernel = k == 0 ? &kx : &ky; int order = k == 0 ? dx : dy; int ksize = k == 0 ? ksizeX : ksizeY; CV_Assert( ksize > order ); if( ksize == 1 ) kerI[0] = 1; else if( ksize == 3 ) { if( order == 0 ) kerI[0] = 1, kerI[1] = 2, kerI[2] = 1; else if( order == 1 ) kerI[0] = -1, kerI[1] = 0, kerI[2] = 1; else kerI[0] = 1, kerI[1] = -2, kerI[2] = 1; } else { int oldval, newval; kerI[0] = 1; for( i = 0; i < ksize; i++ ) kerI[i+1] = 0; for( i = 0; i < ksize - order - 1; i++ ) { oldval = kerI[0]; for( j = 1; j <= ksize; j++ ) { newval = kerI[j]+kerI[j-1]; kerI[j-1] = oldval; oldval = newval; } } for( i = 0; i < order; i++ ) { oldval = -kerI[0]; for( j = 1; j <= ksize; j++ ) { newval = kerI[j-1] - kerI[j]; kerI[j-1] = oldval; oldval = newval; } } } Mat temp(kernel->rows, kernel->cols, CV_32S, &kerI[0]); double scale = !normalize ? 1. : 1./(1 << (ksize-order-1)); temp.convertTo(*kernel, ktype, scale); } } } void cv::getDerivKernels( OutputArray kx, OutputArray ky, int dx, int dy, int ksize, bool normalize, int ktype ) { if( ksize <= 0 ) getScharrKernels( kx, ky, dx, dy, normalize, ktype ); else getSobelKernels( kx, ky, dx, dy, ksize, normalize, ktype ); } cv::Ptr cv::createDerivFilter(int srcType, int dstType, int dx, int dy, int ksize, int borderType ) { Mat kx, ky; getDerivKernels( kx, ky, dx, dy, ksize, false, CV_32F ); return createSeparableLinearFilter(srcType, dstType, kx, ky, Point(-1,-1), 0, borderType ); } #if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7) namespace cv { static bool IPPDerivScharr(const Mat& src, Mat& dst, int ddepth, int dx, int dy, double scale) { int bufSize = 0; cv::AutoBuffer buffer; IppiSize roi = ippiSize(src.cols, src.rows); if( ddepth < 0 ) ddepth = src.depth(); dst.create( src.size(), CV_MAKETYPE(ddepth, src.channels()) ); switch(src.type()) { case CV_8U: { if(scale != 1) return false; switch(dst.type()) { case CV_16S: { if((dx == 1) && (dy == 0)) { ippiFilterScharrVertGetBufferSize_8u16s_C1R(roi,&bufSize); buffer.allocate(bufSize); ippiFilterScharrVertBorder_8u16s_C1R((const Ipp8u*)src.data, src.step, (Ipp16s*)dst.data, dst.step, roi, ippBorderRepl, 0, (Ipp8u*)(char*)buffer); return true; } if((dx == 0) && (dy == 1)) { ippiFilterScharrHorizGetBufferSize_8u16s_C1R(roi,&bufSize); buffer.allocate(bufSize); ippiFilterScharrHorizBorder_8u16s_C1R((const Ipp8u*)src.data, src.step, (Ipp16s*)dst.data, dst.step, roi, ippBorderRepl, 0, (Ipp8u*)(char*)buffer); return true; } } default: return false; } } case CV_32F: { switch(dst.type()) { case CV_32F: if((dx == 1) && (dy == 0)) { ippiFilterScharrVertGetBufferSize_32f_C1R(ippiSize(src.cols, src.rows),&bufSize); buffer.allocate(bufSize); ippiFilterScharrVertBorder_32f_C1R((const Ipp32f*)src.data, src.step, (Ipp32f*)dst.data, dst.step, ippiSize(src.cols, src.rows), ippBorderRepl, 0, (Ipp8u*)(char*)buffer); if(scale != 1) /* IPP is fast, so MulC produce very little perf degradation */ ippiMulC_32f_C1IR((Ipp32f)scale,(Ipp32f*)dst.data,dst.step,ippiSize(dst.cols*dst.channels(),dst.rows)); return true; } if((dx == 0) && (dy == 1)) { ippiFilterScharrHorizGetBufferSize_32f_C1R(ippiSize(src.cols, src.rows),&bufSize); buffer.allocate(bufSize); ippiFilterScharrHorizBorder_32f_C1R((const Ipp32f*)src.data, src.step, (Ipp32f*)dst.data, dst.step, ippiSize(src.cols, src.rows), ippBorderRepl, 0, (Ipp8u*)(char*)buffer); if(scale != 1) ippiMulC_32f_C1IR((Ipp32f)scale,(Ipp32f *)dst.data,dst.step,ippiSize(dst.cols*dst.channels(),dst.rows)); return true; } default: return false; } } default: return false; } } static bool IPPDeriv(const Mat& src, Mat& dst, int ddepth, int dx, int dy, int ksize, double scale) { int bufSize = 0; cv::AutoBuffer buffer; if(ksize == 3 || ksize == 5) { if( ddepth < 0 ) ddepth = src.depth(); if(src.type() == CV_8U && dst.type() == CV_16S && scale == 1) { if((dx == 1) && (dy == 0)) { ippiFilterSobelNegVertGetBufferSize_8u16s_C1R(ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),&bufSize); buffer.allocate(bufSize); ippiFilterSobelNegVertBorder_8u16s_C1R((const Ipp8u*)src.data, src.step, (Ipp16s*)dst.data, dst.step, ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize), ippBorderRepl, 0, (Ipp8u*)(char*)buffer); return true; } if((dx == 0) && (dy == 1)) { ippiFilterSobelHorizGetBufferSize_8u16s_C1R(ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),&bufSize); buffer.allocate(bufSize); ippiFilterSobelHorizBorder_8u16s_C1R((const Ipp8u*)src.data, src.step, (Ipp16s*)dst.data, dst.step, ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize), ippBorderRepl, 0, (Ipp8u*)(char*)buffer); return true; } if((dx == 2) && (dy == 0)) { ippiFilterSobelVertSecondGetBufferSize_8u16s_C1R(ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),&bufSize); buffer.allocate(bufSize); ippiFilterSobelVertSecondBorder_8u16s_C1R((const Ipp8u*)src.data, src.step, (Ipp16s*)dst.data, dst.step, ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize), ippBorderRepl, 0, (Ipp8u*)(char*)buffer); return true; } if((dx == 0) && (dy == 2)) { ippiFilterSobelHorizSecondGetBufferSize_8u16s_C1R(ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),&bufSize); buffer.allocate(bufSize); ippiFilterSobelHorizSecondBorder_8u16s_C1R((const Ipp8u*)src.data, src.step, (Ipp16s*)dst.data, dst.step, ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize), ippBorderRepl, 0, (Ipp8u*)(char*)buffer); return true; } } if(src.type() == CV_32F && dst.type() == CV_32F) { if((dx == 1) && (dy == 0)) { ippiFilterSobelNegVertGetBufferSize_32f_C1R(ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),&bufSize); buffer.allocate(bufSize); ippiFilterSobelNegVertBorder_32f_C1R((const Ipp32f*)src.data, src.step, (Ipp32f*)dst.data, dst.step, ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize), ippBorderRepl, 0, (Ipp8u*)(char*)buffer); if(scale != 1) ippiMulC_32f_C1IR((Ipp32f)scale,(Ipp32f *)dst.data,dst.step,ippiSize(dst.cols*dst.channels(),dst.rows)); return true; } if((dx == 0) && (dy == 1)) { ippiFilterSobelHorizGetBufferSize_32f_C1R(ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),&bufSize); buffer.allocate(bufSize); ippiFilterSobelHorizBorder_32f_C1R((const Ipp32f*)src.data, src.step, (Ipp32f*)dst.data, dst.step, ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize), ippBorderRepl, 0, (Ipp8u*)(char*)buffer); if(scale != 1) ippiMulC_32f_C1IR((Ipp32f)scale,(Ipp32f *)dst.data,dst.step,ippiSize(dst.cols*dst.channels(),dst.rows)); return true; } if((dx == 2) && (dy == 0)) { ippiFilterSobelVertSecondGetBufferSize_32f_C1R(ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),&bufSize); buffer.allocate(bufSize); ippiFilterSobelVertSecondBorder_32f_C1R((const Ipp32f*)src.data, src.step, (Ipp32f*)dst.data, dst.step, ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize), ippBorderRepl, 0, (Ipp8u*)(char*)buffer); if(scale != 1) ippiMulC_32f_C1IR((Ipp32f)scale,(Ipp32f *)dst.data,dst.step,ippiSize(dst.cols*dst.channels(),dst.rows)); return true; } if((dx == 0) && (dy == 2)) { ippiFilterSobelHorizSecondGetBufferSize_32f_C1R(ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),&bufSize); buffer.allocate(bufSize); ippiFilterSobelHorizSecondBorder_32f_C1R((const Ipp32f*)src.data, src.step, (Ipp32f*)dst.data, dst.step, ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize), ippBorderRepl, 0, (Ipp8u*)(char*)buffer); if(scale != 1) ippiMulC_32f_C1IR((Ipp32f)scale,(Ipp32f *)dst.data,dst.step,ippiSize(dst.cols*dst.channels(),dst.rows)); return true; } } } if(ksize <= 0) return IPPDerivScharr(src, dst, ddepth, dx, dy, scale); return false; } } #endif void cv::Sobel( InputArray _src, OutputArray _dst, int ddepth, int dx, int dy, int ksize, double scale, double delta, int borderType ) { Mat src = _src.getMat(); if (ddepth < 0) ddepth = src.depth(); _dst.create( src.size(), CV_MAKETYPE(ddepth, src.channels()) ); Mat dst = _dst.getMat(); #ifdef HAVE_TEGRA_OPTIMIZATION if (scale == 1.0 && delta == 0) { if (ksize == 3 && tegra::sobel3x3(src, dst, dx, dy, borderType)) return; if (ksize == -1 && tegra::scharr(src, dst, dx, dy, borderType)) return; } #endif #if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7) if(dx < 3 && dy < 3 && src.channels() == 1 && borderType == 1) { if(IPPDeriv(src, dst, ddepth, dx, dy, ksize,scale)) return; } #endif int ktype = std::max(CV_32F, std::max(ddepth, src.depth())); Mat kx, ky; getDerivKernels( kx, ky, dx, dy, ksize, false, ktype ); if( scale != 1 ) { // usually the smoothing part is the slowest to compute, // so try to scale it instead of the faster differenciating part if( dx == 0 ) kx *= scale; else ky *= scale; } sepFilter2D( src, dst, ddepth, kx, ky, Point(-1,-1), delta, borderType ); } void cv::Scharr( InputArray _src, OutputArray _dst, int ddepth, int dx, int dy, double scale, double delta, int borderType ) { Mat src = _src.getMat(); if (ddepth < 0) ddepth = src.depth(); _dst.create( src.size(), CV_MAKETYPE(ddepth, src.channels()) ); Mat dst = _dst.getMat(); #ifdef HAVE_TEGRA_OPTIMIZATION if (scale == 1.0 && delta == 0) if (tegra::scharr(src, dst, dx, dy, borderType)) return; #endif #if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7) if(dx < 2 && dy < 2 && src.channels() == 1 && borderType == 1) { if(IPPDerivScharr(src, dst, ddepth, dx, dy, scale)) return; } #endif int ktype = std::max(CV_32F, std::max(ddepth, src.depth())); Mat kx, ky; getScharrKernels( kx, ky, dx, dy, false, ktype ); if( scale != 1 ) { // usually the smoothing part is the slowest to compute, // so try to scale it instead of the faster differenciating part if( dx == 0 ) kx *= scale; else ky *= scale; } sepFilter2D( src, dst, ddepth, kx, ky, Point(-1,-1), delta, borderType ); } void cv::Laplacian( InputArray _src, OutputArray _dst, int ddepth, int ksize, double scale, double delta, int borderType ) { Mat src = _src.getMat(); if (ddepth < 0) ddepth = src.depth(); _dst.create( src.size(), CV_MAKETYPE(ddepth, src.channels()) ); Mat dst = _dst.getMat(); #ifdef HAVE_TEGRA_OPTIMIZATION if (scale == 1.0 && delta == 0) { if (ksize == 1 && tegra::laplace1(src, dst, borderType)) return; if (ksize == 3 && tegra::laplace3(src, dst, borderType)) return; if (ksize == 5 && tegra::laplace5(src, dst, borderType)) return; } #endif if( ksize == 1 || ksize == 3 ) { float K[2][9] = {{0, 1, 0, 1, -4, 1, 0, 1, 0}, {2, 0, 2, 0, -8, 0, 2, 0, 2}}; Mat kernel(3, 3, CV_32F, K[ksize == 3]); if( scale != 1 ) kernel *= scale; filter2D( src, dst, ddepth, kernel, Point(-1,-1), delta, borderType ); } else { const size_t STRIPE_SIZE = 1 << 14; int depth = src.depth(); int ktype = std::max(CV_32F, std::max(ddepth, depth)); int wdepth = depth == CV_8U && ksize <= 5 ? CV_16S : depth <= CV_32F ? CV_32F : CV_64F; int wtype = CV_MAKETYPE(wdepth, src.channels()); Mat kd, ks; getSobelKernels( kd, ks, 2, 0, ksize, false, ktype ); if( ddepth < 0 ) ddepth = src.depth(); int dtype = CV_MAKETYPE(ddepth, src.channels()); int dy0 = std::min(std::max((int)(STRIPE_SIZE/(getElemSize(src.type())*src.cols)), 1), src.rows); Ptr fx = createSeparableLinearFilter(src.type(), wtype, kd, ks, Point(-1,-1), 0, borderType, borderType, Scalar() ); Ptr fy = createSeparableLinearFilter(src.type(), wtype, ks, kd, Point(-1,-1), 0, borderType, borderType, Scalar() ); int y = fx->start(src), dsty = 0, dy = 0; fy->start(src); const uchar* sptr = src.data + y*src.step; Mat d2x( dy0 + kd.rows - 1, src.cols, wtype ); Mat d2y( dy0 + kd.rows - 1, src.cols, wtype ); for( ; dsty < src.rows; sptr += dy0*src.step, dsty += dy ) { fx->proceed( sptr, (int)src.step, dy0, d2x.data, (int)d2x.step ); dy = fy->proceed( sptr, (int)src.step, dy0, d2y.data, (int)d2y.step ); if( dy > 0 ) { Mat dstripe = dst.rowRange(dsty, dsty + dy); d2x.rows = d2y.rows = dy; // modify the headers, which should work d2x += d2y; d2x.convertTo( dstripe, dtype, scale, delta ); } } } } ///////////////////////////////////////////////////////////////////////////////////////// CV_IMPL void cvSobel( const void* srcarr, void* dstarr, int dx, int dy, int aperture_size ) { cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr); CV_Assert( src.size() == dst.size() && src.channels() == dst.channels() ); cv::Sobel( src, dst, dst.depth(), dx, dy, aperture_size, 1, 0, cv::BORDER_REPLICATE ); if( CV_IS_IMAGE(srcarr) && ((IplImage*)srcarr)->origin && dy % 2 != 0 ) dst *= -1; } CV_IMPL void cvLaplace( const void* srcarr, void* dstarr, int aperture_size ) { cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr); CV_Assert( src.size() == dst.size() && src.channels() == dst.channels() ); cv::Laplacian( src, dst, dst.depth(), aperture_size, 1, 0, cv::BORDER_REPLICATE ); } /* End of file. */