// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. // // Copyright (C) 2018, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. #include "test_precomp.hpp" #include "opencv2/core/ocl.hpp" namespace opencv_test { namespace { CV_ENUM(DNNBackend, DNN_BACKEND_DEFAULT, DNN_BACKEND_HALIDE, DNN_BACKEND_INFERENCE_ENGINE) CV_ENUM(DNNTarget, DNN_TARGET_CPU, DNN_TARGET_OPENCL) static void loadNet(const std::string& weights, const std::string& proto, const std::string& framework, Net* net) { if (framework == "caffe") *net = cv::dnn::readNetFromCaffe(proto, weights); else if (framework == "torch") *net = cv::dnn::readNetFromTorch(weights); else if (framework == "tensorflow") *net = cv::dnn::readNetFromTensorflow(weights, proto); else CV_Error(Error::StsNotImplemented, "Unknown framework " + framework); } class DNNTestNetwork : public TestWithParam > { public: dnn::Backend backend; dnn::Target target; DNNTestNetwork() { backend = (dnn::Backend)(int)get<0>(GetParam()); target = (dnn::Target)(int)get<1>(GetParam()); } void processNet(const std::string& weights, const std::string& proto, Size inpSize, const std::string& outputLayer, const std::string& framework, const std::string& halideScheduler = "", double l1 = 1e-5, double lInf = 1e-4) { // Create a common input blob. int blobSize[] = {1, 3, inpSize.height, inpSize.width}; Mat inp(4, blobSize, CV_32FC1); randu(inp, 0.0f, 1.0f); processNet(weights, proto, inp, outputLayer, framework, halideScheduler, l1, lInf); } void processNet(std::string weights, std::string proto, Mat inp, const std::string& outputLayer, const std::string& framework, std::string halideScheduler = "", double l1 = 1e-5, double lInf = 1e-4) { if (backend == DNN_BACKEND_DEFAULT && target == DNN_TARGET_OPENCL) { #ifdef HAVE_OPENCL if (!cv::ocl::useOpenCL()) #endif { throw SkipTestException("OpenCL is not available/disabled in OpenCV"); } } weights = findDataFile(weights, false); if (!proto.empty()) proto = findDataFile(proto, false); // Create two networks - with default backend and target and a tested one. Net netDefault, net; loadNet(weights, proto, framework, &netDefault); loadNet(weights, proto, framework, &net); netDefault.setInput(inp); Mat outDefault = netDefault.forward(outputLayer).clone(); net.setInput(inp); net.setPreferableBackend(backend); net.setPreferableTarget(target); if (backend == DNN_BACKEND_HALIDE && !halideScheduler.empty()) { halideScheduler = findDataFile(halideScheduler, false); net.setHalideScheduler(halideScheduler); } Mat out = net.forward(outputLayer).clone(); if (outputLayer == "detection_out") checkDetections(outDefault, out, "First run", l1, lInf); else normAssert(outDefault, out, "First run", l1, lInf); // Test 2: change input. inp *= 0.1f; netDefault.setInput(inp); net.setInput(inp); outDefault = netDefault.forward(outputLayer).clone(); out = net.forward(outputLayer).clone(); if (outputLayer == "detection_out") checkDetections(outDefault, out, "Second run", l1, lInf); else normAssert(outDefault, out, "Second run", l1, lInf); } void checkDetections(const Mat& out, const Mat& ref, const std::string& msg, float l1, float lInf, int top = 5) { top = std::min(std::min(top, out.size[2]), out.size[3]); std::vector range(4, cv::Range::all()); range[2] = cv::Range(0, top); normAssert(out(range), ref(range)); } }; TEST_P(DNNTestNetwork, AlexNet) { processNet("dnn/bvlc_alexnet.caffemodel", "dnn/bvlc_alexnet.prototxt", Size(227, 227), "prob", "caffe", target == DNN_TARGET_OPENCL ? "dnn/halide_scheduler_opencl_alexnet.yml" : "dnn/halide_scheduler_alexnet.yml"); } TEST_P(DNNTestNetwork, ResNet_50) { processNet("dnn/ResNet-50-model.caffemodel", "dnn/ResNet-50-deploy.prototxt", Size(224, 224), "prob", "caffe", target == DNN_TARGET_OPENCL ? "dnn/halide_scheduler_opencl_resnet_50.yml" : "dnn/halide_scheduler_resnet_50.yml"); } TEST_P(DNNTestNetwork, SqueezeNet_v1_1) { processNet("dnn/squeezenet_v1.1.caffemodel", "dnn/squeezenet_v1.1.prototxt", Size(227, 227), "prob", "caffe", target == DNN_TARGET_OPENCL ? "dnn/halide_scheduler_opencl_squeezenet_v1_1.yml" : "dnn/halide_scheduler_squeezenet_v1_1.yml"); } TEST_P(DNNTestNetwork, GoogLeNet) { processNet("dnn/bvlc_googlenet.caffemodel", "dnn/bvlc_googlenet.prototxt", Size(224, 224), "prob", "caffe"); } TEST_P(DNNTestNetwork, Inception_5h) { if (backend == DNN_BACKEND_INFERENCE_ENGINE) throw SkipTestException(""); processNet("dnn/tensorflow_inception_graph.pb", "", Size(224, 224), "softmax2", "tensorflow", target == DNN_TARGET_OPENCL ? "dnn/halide_scheduler_opencl_inception_5h.yml" : "dnn/halide_scheduler_inception_5h.yml"); } TEST_P(DNNTestNetwork, ENet) { if (backend == DNN_BACKEND_INFERENCE_ENGINE) throw SkipTestException(""); processNet("dnn/Enet-model-best.net", "", Size(512, 512), "l367_Deconvolution", "torch", target == DNN_TARGET_OPENCL ? "dnn/halide_scheduler_opencl_enet.yml" : "dnn/halide_scheduler_enet.yml", 2e-5, 0.15); } TEST_P(DNNTestNetwork, MobileNetSSD) { Mat sample = imread(findDataFile("dnn/street.png", false)); Mat inp = blobFromImage(sample, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), false); processNet("dnn/MobileNetSSD_deploy.caffemodel", "dnn/MobileNetSSD_deploy.prototxt", inp, "detection_out", "caffe"); } TEST_P(DNNTestNetwork, SSD_VGG16) { if (backend == DNN_BACKEND_DEFAULT && target == DNN_TARGET_OPENCL || backend == DNN_BACKEND_HALIDE && target == DNN_TARGET_CPU || backend == DNN_BACKEND_INFERENCE_ENGINE) throw SkipTestException(""); processNet("dnn/VGG_ILSVRC2016_SSD_300x300_iter_440000.caffemodel", "dnn/ssd_vgg16.prototxt", Size(300, 300), "detection_out", "caffe"); } TEST_P(DNNTestNetwork, OpenPose_pose_coco) { if (backend == DNN_BACKEND_HALIDE) throw SkipTestException(""); processNet("dnn/openpose_pose_coco.caffemodel", "dnn/openpose_pose_coco.prototxt", Size(368, 368), "", "caffe"); } TEST_P(DNNTestNetwork, OpenPose_pose_mpi) { if (backend == DNN_BACKEND_HALIDE) throw SkipTestException(""); processNet("dnn/openpose_pose_mpi.caffemodel", "dnn/openpose_pose_mpi.prototxt", Size(368, 368), "", "caffe"); } TEST_P(DNNTestNetwork, OpenPose_pose_mpi_faster_4_stages) { if (backend == DNN_BACKEND_HALIDE) throw SkipTestException(""); // The same .caffemodel but modified .prototxt // See https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/pose/poseParameters.cpp processNet("dnn/openpose_pose_mpi.caffemodel", "dnn/openpose_pose_mpi_faster_4_stages.prototxt", Size(368, 368), "", "caffe"); } TEST_P(DNNTestNetwork, OpenFace) { if (backend == DNN_BACKEND_HALIDE) throw SkipTestException(""); processNet("dnn/openface_nn4.small2.v1.t7", "", Size(96, 96), "", "torch"); } TEST_P(DNNTestNetwork, opencv_face_detector) { if (backend == DNN_BACKEND_HALIDE || backend == DNN_BACKEND_DEFAULT && target == DNN_TARGET_OPENCL) throw SkipTestException(""); Mat img = imread(findDataFile("gpu/lbpcascade/er.png", false)); Mat inp = blobFromImage(img, 1.0, Size(), Scalar(104.0, 177.0, 123.0), false, false); processNet("dnn/opencv_face_detector.caffemodel", "dnn/opencv_face_detector.prototxt", inp, "detection_out", "caffe"); } const tuple testCases[] = { #ifdef HAVE_HALIDE tuple(DNN_BACKEND_HALIDE, DNN_TARGET_CPU), tuple(DNN_BACKEND_HALIDE, DNN_TARGET_OPENCL), #endif #ifdef HAVE_INF_ENGINE tuple(DNN_BACKEND_INFERENCE_ENGINE, DNN_TARGET_CPU), #endif tuple(DNN_BACKEND_DEFAULT, DNN_TARGET_OPENCL) }; INSTANTIATE_TEST_CASE_P(/*nothing*/, DNNTestNetwork, testing::ValuesIn(testCases)); }} // namespace