/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other GpuMaterials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or bpied warranties, including, but not limited to, the bpied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include "mcwutil.hpp" using namespace std; using namespace cv; using namespace cv::ocl; #if !defined (HAVE_OPENCL) void cv::ocl::PyrLKOpticalFlow::sparse(const oclMat&, const oclMat&, const oclMat&, oclMat&, oclMat&, oclMat*) { } void cv::ocl::PyrLKOpticalFlow::dense(const oclMat&, const oclMat&, oclMat&, oclMat&, oclMat*) { } #else /* !defined (HAVE_OPENCL) */ namespace cv { namespace ocl { ///////////////////////////OpenCL kernel strings/////////////////////////// extern const char *pyrlk; extern const char *operator_setTo; extern const char *operator_convertTo; extern const char *arithm_mul; extern const char *pyr_down; } } struct dim3 { unsigned int x, y, z; }; struct float2 { float x, y; }; struct int2 { int x, y; }; namespace { void calcPatchSize(cv::Size winSize, int cn, dim3& block, dim3& patch, bool isDeviceArch11) { winSize.width *= cn; if (winSize.width > 32 && winSize.width > 2 * winSize.height) { block.x = isDeviceArch11 ? 16 : 32; block.y = 8; } else { block.x = 16; block.y = isDeviceArch11 ? 8 : 16; } patch.x = (winSize.width + block.x - 1) / block.x; patch.y = (winSize.height + block.y - 1) / block.y; block.z = patch.z = 1; } } inline int divUp(int total, int grain) { return (total + grain - 1) / grain; } /////////////////////////////////////////////////////////////////////////// //////////////////////////////// ConvertTo //////////////////////////////// /////////////////////////////////////////////////////////////////////////// void convert_run_cus(const oclMat &src, oclMat &dst, double alpha, double beta) { string kernelName = "convert_to_S"; stringstream idxStr; idxStr << src.depth(); kernelName += idxStr.str(); float alpha_f = (float)alpha, beta_f = (float)beta; CV_DbgAssert(src.rows == dst.rows && src.cols == dst.cols); vector > args; size_t localThreads[3] = {16, 16, 1}; size_t globalThreads[3]; globalThreads[0] = (dst.cols + localThreads[0] - 1) / localThreads[0] * localThreads[0]; globalThreads[1] = (dst.rows + localThreads[1] - 1) / localThreads[1] * localThreads[1]; globalThreads[2] = 1; int dststep_in_pixel = dst.step / dst.elemSize(), dstoffset_in_pixel = dst.offset / dst.elemSize(); int srcstep_in_pixel = src.step / src.elemSize(), srcoffset_in_pixel = src.offset / src.elemSize(); if(dst.type() == CV_8UC1) { globalThreads[0] = ((dst.cols + 4) / 4 + localThreads[0]) / localThreads[0] * localThreads[0]; } args.push_back( make_pair( sizeof(cl_mem) , (void *)&src.data )); args.push_back( make_pair( sizeof(cl_mem) , (void *)&dst.data )); args.push_back( make_pair( sizeof(cl_int) , (void *)&src.cols )); args.push_back( make_pair( sizeof(cl_int) , (void *)&src.rows )); args.push_back( make_pair( sizeof(cl_int) , (void *)&srcstep_in_pixel )); args.push_back( make_pair( sizeof(cl_int) , (void *)&srcoffset_in_pixel )); args.push_back( make_pair( sizeof(cl_int) , (void *)&dststep_in_pixel )); args.push_back( make_pair( sizeof(cl_int) , (void *)&dstoffset_in_pixel )); args.push_back( make_pair( sizeof(cl_float) , (void *)&alpha_f )); args.push_back( make_pair( sizeof(cl_float) , (void *)&beta_f )); openCLExecuteKernel2(dst.clCxt , &operator_convertTo, kernelName, globalThreads, localThreads, args, dst.channels(), dst.depth(), CLFLUSH); } void convertTo( const oclMat &src, oclMat &m, int rtype, double alpha = 1, double beta = 0 ); void convertTo( const oclMat &src, oclMat &dst, int rtype, double alpha, double beta ) { //cout << "cv::ocl::oclMat::convertTo()" << endl; bool noScale = fabs(alpha - 1) < std::numeric_limits::epsilon() && fabs(beta) < std::numeric_limits::epsilon(); if( rtype < 0 ) rtype = src.type(); else rtype = CV_MAKETYPE(CV_MAT_DEPTH(rtype), src.channels()); int sdepth = src.depth(), ddepth = CV_MAT_DEPTH(rtype); if( sdepth == ddepth && noScale ) { src.copyTo(dst); return; } oclMat temp; const oclMat *psrc = &src; if( sdepth != ddepth && psrc == &dst ) psrc = &(temp = src); dst.create( src.size(), rtype ); convert_run_cus(*psrc, dst, alpha, beta); } /////////////////////////////////////////////////////////////////////////// //////////////////////////////// setTo //////////////////////////////////// /////////////////////////////////////////////////////////////////////////// //oclMat &operator = (const Scalar &s) //{ // //cout << "cv::ocl::oclMat::=" << endl; // setTo(s); // return *this; //} void set_to_withoutmask_run_cus(const oclMat &dst, const Scalar &scalar, string kernelName) { vector > args; size_t localThreads[3] = {16, 16, 1}; size_t globalThreads[3]; globalThreads[0] = (dst.cols + localThreads[0] - 1) / localThreads[0] * localThreads[0]; globalThreads[1] = (dst.rows + localThreads[1] - 1) / localThreads[1] * localThreads[1]; globalThreads[2] = 1; int step_in_pixel = dst.step / dst.elemSize(), offset_in_pixel = dst.offset / dst.elemSize(); if(dst.type() == CV_8UC1) { globalThreads[0] = ((dst.cols + 4) / 4 + localThreads[0] - 1) / localThreads[0] * localThreads[0]; } char compile_option[32]; union sc { cl_uchar4 uval; cl_char4 cval; cl_ushort4 usval; cl_short4 shval; cl_int4 ival; cl_float4 fval; cl_double4 dval; }val; switch(dst.depth()) { case 0: val.uval.s[0] = saturate_cast(scalar.val[0]); val.uval.s[1] = saturate_cast(scalar.val[1]); val.uval.s[2] = saturate_cast(scalar.val[2]); val.uval.s[3] = saturate_cast(scalar.val[3]); switch(dst.channels()) { case 1: sprintf(compile_option, "-D GENTYPE=uchar"); args.push_back( make_pair( sizeof(cl_uchar) , (void *)&val.uval.s[0] )); break; case 4: sprintf(compile_option, "-D GENTYPE=uchar4"); args.push_back( make_pair( sizeof(cl_uchar4) , (void *)&val.uval )); break; default: CV_Error(CV_StsUnsupportedFormat,"unsupported channels"); } break; case 1: val.cval.s[0] = saturate_cast(scalar.val[0]); val.cval.s[1] = saturate_cast(scalar.val[1]); val.cval.s[2] = saturate_cast(scalar.val[2]); val.cval.s[3] = saturate_cast(scalar.val[3]); switch(dst.channels()) { case 1: sprintf(compile_option, "-D GENTYPE=char"); args.push_back( make_pair( sizeof(cl_char) , (void *)&val.cval.s[0] )); break; case 4: sprintf(compile_option, "-D GENTYPE=char4"); args.push_back( make_pair( sizeof(cl_char4) , (void *)&val.cval )); break; default: CV_Error(CV_StsUnsupportedFormat,"unsupported channels"); } break; case 2: val.usval.s[0] = saturate_cast(scalar.val[0]); val.usval.s[1] = saturate_cast(scalar.val[1]); val.usval.s[2] = saturate_cast(scalar.val[2]); val.usval.s[3] = saturate_cast(scalar.val[3]); switch(dst.channels()) { case 1: sprintf(compile_option, "-D GENTYPE=ushort"); args.push_back( make_pair( sizeof(cl_ushort) , (void *)&val.usval.s[0] )); break; case 4: sprintf(compile_option, "-D GENTYPE=ushort4"); args.push_back( make_pair( sizeof(cl_ushort4) , (void *)&val.usval )); break; default: CV_Error(CV_StsUnsupportedFormat,"unsupported channels"); } break; case 3: val.shval.s[0] = saturate_cast(scalar.val[0]); val.shval.s[1] = saturate_cast(scalar.val[1]); val.shval.s[2] = saturate_cast(scalar.val[2]); val.shval.s[3] = saturate_cast(scalar.val[3]); switch(dst.channels()) { case 1: sprintf(compile_option, "-D GENTYPE=short"); args.push_back( make_pair( sizeof(cl_short) , (void *)&val.shval.s[0] )); break; case 4: sprintf(compile_option, "-D GENTYPE=short4"); args.push_back( make_pair( sizeof(cl_short4) , (void *)&val.shval )); break; default: CV_Error(CV_StsUnsupportedFormat,"unsupported channels"); } break; case 4: val.ival.s[0] = saturate_cast(scalar.val[0]); val.ival.s[1] = saturate_cast(scalar.val[1]); val.ival.s[2] = saturate_cast(scalar.val[2]); val.ival.s[3] = saturate_cast(scalar.val[3]); switch(dst.channels()) { case 1: sprintf(compile_option, "-D GENTYPE=int"); args.push_back( make_pair( sizeof(cl_int) , (void *)&val.ival.s[0] )); break; case 2: sprintf(compile_option, "-D GENTYPE=int2"); cl_int2 i2val; i2val.s[0] = val.ival.s[0]; i2val.s[1] = val.ival.s[1]; args.push_back( make_pair( sizeof(cl_int2) , (void *)&i2val )); break; case 4: sprintf(compile_option, "-D GENTYPE=int4"); args.push_back( make_pair( sizeof(cl_int4) , (void *)&val.ival )); break; default: CV_Error(CV_StsUnsupportedFormat,"unsupported channels"); } break; case 5: val.fval.s[0] = (float)scalar.val[0]; val.fval.s[1] = (float)scalar.val[1]; val.fval.s[2] = (float)scalar.val[2]; val.fval.s[3] = (float)scalar.val[3]; switch(dst.channels()) { case 1: sprintf(compile_option, "-D GENTYPE=float"); args.push_back( make_pair( sizeof(cl_float) , (void *)&val.fval.s[0] )); break; case 4: sprintf(compile_option, "-D GENTYPE=float4"); args.push_back( make_pair( sizeof(cl_float4) , (void *)&val.fval )); break; default: CV_Error(CV_StsUnsupportedFormat,"unsupported channels"); } break; case 6: val.dval.s[0] = scalar.val[0]; val.dval.s[1] = scalar.val[1]; val.dval.s[2] = scalar.val[2]; val.dval.s[3] = scalar.val[3]; switch(dst.channels()) { case 1: sprintf(compile_option, "-D GENTYPE=double"); args.push_back( make_pair( sizeof(cl_double) , (void *)&val.dval.s[0] )); break; case 4: sprintf(compile_option, "-D GENTYPE=double4"); args.push_back( make_pair( sizeof(cl_double4) , (void *)&val.dval )); break; default: CV_Error(CV_StsUnsupportedFormat,"unsupported channels"); } break; default: CV_Error(CV_StsUnsupportedFormat,"unknown depth"); } #if CL_VERSION_1_2 if(dst.offset==0 && dst.cols==dst.wholecols) { clEnqueueFillBuffer(dst.clCxt->impl->clCmdQueue,(cl_mem)dst.data,args[0].second,args[0].first,0,dst.step*dst.rows,0,NULL,NULL); } else { args.push_back( make_pair( sizeof(cl_mem) , (void *)&dst.data )); args.push_back( make_pair( sizeof(cl_int) , (void *)&dst.cols )); args.push_back( make_pair( sizeof(cl_int) , (void *)&dst.rows )); args.push_back( make_pair( sizeof(cl_int) , (void *)&step_in_pixel )); args.push_back( make_pair( sizeof(cl_int) , (void *)&offset_in_pixel)); openCLExecuteKernel2(dst.clCxt , &operator_setTo, kernelName, globalThreads, localThreads, args, -1, -1,compile_option, CLFLUSH); } #else args.push_back( make_pair( sizeof(cl_mem) , (void *)&dst.data )); args.push_back( make_pair( sizeof(cl_int) , (void *)&dst.cols )); args.push_back( make_pair( sizeof(cl_int) , (void *)&dst.rows )); args.push_back( make_pair( sizeof(cl_int) , (void *)&step_in_pixel )); args.push_back( make_pair( sizeof(cl_int) , (void *)&offset_in_pixel)); openCLExecuteKernel2(dst.clCxt , &operator_setTo, kernelName, globalThreads, localThreads, args, -1, -1,compile_option, CLFLUSH); #endif } oclMat &setTo(oclMat &src, const Scalar &scalar) { CV_Assert( src.depth() >= 0 && src.depth() <= 6 ); CV_DbgAssert( !src.empty()); if(src.type()==CV_8UC1) { set_to_withoutmask_run_cus(src, scalar, "set_to_without_mask_C1_D0"); } else { set_to_withoutmask_run_cus(src, scalar, "set_to_without_mask"); } return src; } void arithmetic_run(const oclMat &src1, oclMat &dst, string kernelName, const char **kernelString, void *_scalar) { if(src1.clCxt -> impl -> double_support ==0 && src1.type() == CV_64F) { CV_Error(CV_GpuNotSupported,"Selected device don't support double\r\n"); return; } //dst.create(src1.size(), src1.type()); //CV_Assert(src1.cols == src2.cols && src2.cols == dst.cols && // src1.rows == src2.rows && src2.rows == dst.rows); CV_Assert(src1.cols == dst.cols && src1.rows == dst.rows); CV_Assert(src1.type() == dst.type()); CV_Assert(src1.depth() != CV_8S); Context *clCxt = src1.clCxt; //int channels = dst.channels(); //int depth = dst.depth(); //int vector_lengths[4][7] = {{4, 0, 4, 4, 1, 1, 1}, // {4, 0, 4, 4, 1, 1, 1}, // {4, 0, 4, 4, 1, 1, 1}, // {4, 0, 4, 4, 1, 1, 1} //}; //size_t vector_length = vector_lengths[channels-1][depth]; //int offset_cols = (dst.offset / dst.elemSize1()) & (vector_length - 1); //int cols = divUp(dst.cols * channels + offset_cols, vector_length); size_t localThreads[3] = { 16, 16, 1 }; //size_t globalThreads[3] = { divUp(cols, localThreads[0]) * localThreads[0], // divUp(dst.rows, localThreads[1]) * localThreads[1], // 1 // }; size_t globalThreads[3] = { src1.cols, src1.rows, 1 }; int dst_step1 = dst.cols * dst.elemSize(); vector > args; args.push_back( make_pair( sizeof(cl_mem), (void *)&src1.data )); args.push_back( make_pair( sizeof(cl_int), (void *)&src1.step )); args.push_back( make_pair( sizeof(cl_int), (void *)&src1.offset )); //args.push_back( make_pair( sizeof(cl_mem), (void *)&src2.data )); //args.push_back( make_pair( sizeof(cl_int), (void *)&src2.step )); //args.push_back( make_pair( sizeof(cl_int), (void *)&src2.offset )); args.push_back( make_pair( sizeof(cl_mem), (void *)&dst.data )); args.push_back( make_pair( sizeof(cl_int), (void *)&dst.step )); args.push_back( make_pair( sizeof(cl_int), (void *)&dst.offset )); args.push_back( make_pair( sizeof(cl_int), (void *)&src1.rows )); args.push_back( make_pair( sizeof(cl_int), (void *)&src1.cols )); args.push_back( make_pair( sizeof(cl_int), (void *)&dst_step1 )); //if(_scalar != NULL) //{ float scalar1 = *((float *)_scalar); args.push_back( make_pair( sizeof(float), (float *)&scalar1 )); //} openCLExecuteKernel2(clCxt, kernelString, kernelName, globalThreads, localThreads, args, -1, src1.depth(), CLFLUSH); } void multiply_cus(const oclMat &src1, oclMat &dst, float scalar) { arithmetic_run(src1, dst, "arithm_muls", &pyrlk, (void *)(&scalar)); } void pyrdown_run_cus(const oclMat &src, const oclMat &dst) { CV_Assert(src.type() == dst.type()); CV_Assert(src.depth() != CV_8S); Context *clCxt = src.clCxt; string kernelName = "pyrDown"; size_t localThreads[3] = { 256, 1, 1 }; size_t globalThreads[3] = { src.cols, dst.rows, 1}; vector > args; args.push_back( make_pair( sizeof(cl_mem), (void *)&src.data )); args.push_back( make_pair( sizeof(cl_int), (void *)&src.step )); args.push_back( make_pair( sizeof(cl_int), (void *)&src.rows)); args.push_back( make_pair( sizeof(cl_int), (void *)&src.cols)); args.push_back( make_pair( sizeof(cl_mem), (void *)&dst.data )); args.push_back( make_pair( sizeof(cl_int), (void *)&dst.step )); args.push_back( make_pair( sizeof(cl_int), (void *)&dst.cols)); openCLExecuteKernel2(clCxt, &pyr_down, kernelName, globalThreads, localThreads, args, src.channels(), src.depth(), CLFLUSH); } void pyrDown_cus(const oclMat& src, oclMat& dst) { CV_Assert(src.depth() <= CV_32F && src.channels() <= 4); dst.create((src.rows + 1) / 2, (src.cols + 1) / 2, src.type()); pyrdown_run_cus(src, dst); } //struct MultiplyScalar //{ // MultiplyScalar(double val_, double scale_) : val(val_), scale(scale_) {} // double operator ()(double a) const // { // return (scale * a * val); // } // const double val; // const double scale; //}; // //void callF(const oclMat& src, oclMat& dst, MultiplyScalar op, int mask) //{ // Mat srcTemp; // Mat dstTemp; // src.download(srcTemp); // dst.download(dstTemp); // // int i; // int j; // int k; // for(i = 0; i < srcTemp.rows; i++) // { // for(j = 0; j < srcTemp.cols; j++) // { // for(k = 0; k < srcTemp.channels(); k++) // { // ((float*)dstTemp.data)[srcTemp.channels() * (i * srcTemp.rows + j) + k] = (float)op(((float*)srcTemp.data)[srcTemp.channels() * (i * srcTemp.rows + j) + k]); // } // } // } // // dst = dstTemp; //} // //static inline bool isAligned(const unsigned char* ptr, size_t size) //{ // return reinterpret_cast(ptr) % size == 0; //} // //static inline bool isAligned(size_t step, size_t size) //{ // return step % size == 0; //} // //void callT(const oclMat& src, oclMat& dst, MultiplyScalar op, int mask) //{ // if (!isAligned(src.data, 4 * sizeof(double)) || !isAligned(src.step, 4 * sizeof(double)) || // !isAligned(dst.data, 4 * sizeof(double)) || !isAligned(dst.step, 4 * sizeof(double))) // { // callF(src, dst, op, mask); // return; // } // // Mat srcTemp; // Mat dstTemp; // src.download(srcTemp); // dst.download(dstTemp); // // int x_shifted; // // int i; // int j; // for(i = 0; i < srcTemp.rows; i++) // { // const double* srcRow = (const double*)srcTemp.data + i * srcTemp.rows; // double* dstRow = (double*)dstTemp.data + i * dstTemp.rows;; // // for(j = 0; j < srcTemp.cols; j++) // { // x_shifted = j * 4; // // if(x_shifted + 4 - 1 < srcTemp.cols) // { // dstRow[x_shifted ] = op(srcRow[x_shifted ]); // dstRow[x_shifted + 1] = op(srcRow[x_shifted + 1]); // dstRow[x_shifted + 2] = op(srcRow[x_shifted + 2]); // dstRow[x_shifted + 3] = op(srcRow[x_shifted + 3]); // } // else // { // for (int real_x = x_shifted; real_x < srcTemp.cols; ++real_x) // { // ((float*)dstTemp.data)[i * srcTemp.rows + real_x] = op(((float*)srcTemp.data)[i * srcTemp.rows + real_x]); // } // } // } // } //} // //void multiply(const oclMat& src1, double val, oclMat& dst, double scale = 1.0f); //void multiply(const oclMat& src1, double val, oclMat& dst, double scale) //{ // MultiplyScalar op(val, scale); // //if(src1.channels() == 1 && dst.channels() == 1) // //{ // // callT(src1, dst, op, 0); // //} // //else // //{ // callF(src1, dst, op, 0); // //} //} cl_mem bindTexture(const oclMat& mat, int depth, int channels) { cl_mem texture; cl_image_format format; int err; if(depth == 0) { format.image_channel_data_type = CL_UNSIGNED_INT8; } else if(depth == 5) { format.image_channel_data_type = CL_FLOAT; } if(channels == 1) { format.image_channel_order = CL_R; } else if(channels == 3) { format.image_channel_order = CL_RGB; } else if(channels == 4) { format.image_channel_order = CL_RGBA; } #if CL_VERSION_1_2 cl_image_desc desc; desc.image_type = CL_MEM_OBJECT_IMAGE2D; desc.image_width = mat.step / mat.elemSize(); desc.image_height = mat.rows; desc.image_depth = NULL; desc.image_array_size = 1; desc.image_row_pitch = 0; desc.image_slice_pitch= 0; desc.buffer = NULL; desc.num_mip_levels = 0; desc.num_samples = 0; texture = clCreateImage(mat.clCxt->impl->clContext, CL_MEM_READ_WRITE, &format, &desc, NULL, &err); #else texture = clCreateImage2D( mat.clCxt->impl->clContext, CL_MEM_READ_WRITE, &format, mat.step / mat.elemSize(), mat.rows, 0, NULL, &err); #endif size_t origin[] = { 0, 0, 0 }; size_t region[] = { mat.step / mat.elemSize(), mat.rows, 1 }; clEnqueueCopyBufferToImage(mat.clCxt->impl->clCmdQueue, (cl_mem)mat.data, texture, 0, origin, region, 0, NULL, 0); openCLSafeCall(err); return texture; } void releaseTexture(cl_mem texture) { openCLFree(texture); } void lkSparse_run(oclMat& I, oclMat& J, const oclMat& prevPts, oclMat& nextPts, oclMat& status, oclMat* err, bool GET_MIN_EIGENVALS, int ptcount, int level, /*dim3 block, */dim3 patch, Size winSize, int iters) { Context *clCxt = I.clCxt; string kernelName = "lkSparse"; size_t localThreads[3] = { 8, 32, 1 }; size_t globalThreads[3] = { 8 * ptcount, 32, 1}; int cn = I.channels(); bool calcErr; if (err) { calcErr = true; } else { calcErr = false; } calcErr = true; cl_mem ITex = bindTexture(I, I.depth(), cn); cl_mem JTex = bindTexture(J, J.depth(), cn); vector > args; args.push_back( make_pair( sizeof(cl_mem), (void *)&ITex )); args.push_back( make_pair( sizeof(cl_mem), (void *)&JTex )); args.push_back( make_pair( sizeof(cl_mem), (void *)&prevPts.data )); args.push_back( make_pair( sizeof(cl_int), (void *)&prevPts.step )); args.push_back( make_pair( sizeof(cl_mem), (void *)&nextPts.data )); args.push_back( make_pair( sizeof(cl_int), (void *)&nextPts.step )); args.push_back( make_pair( sizeof(cl_mem), (void *)&status.data )); //args.push_back( make_pair( sizeof(cl_mem), (void *)&(err->data) )); args.push_back( make_pair( sizeof(cl_int), (void *)&level )); args.push_back( make_pair( sizeof(cl_int), (void *)&I.rows )); args.push_back( make_pair( sizeof(cl_int), (void *)&I.cols )); args.push_back( make_pair( sizeof(cl_int), (void *)&patch.x )); args.push_back( make_pair( sizeof(cl_int), (void *)&patch.y )); args.push_back( make_pair( sizeof(cl_int), (void *)&cn )); args.push_back( make_pair( sizeof(cl_int), (void *)&winSize.width )); args.push_back( make_pair( sizeof(cl_int), (void *)&winSize.height )); args.push_back( make_pair( sizeof(cl_int), (void *)&iters )); args.push_back( make_pair( sizeof(cl_char), (void *)&calcErr )); args.push_back( make_pair( sizeof(cl_char), (void *)&GET_MIN_EIGENVALS )); openCLExecuteKernel2(clCxt, &pyrlk, kernelName, globalThreads, localThreads, args, I.channels(), I.depth(), CLFLUSH); releaseTexture(ITex); releaseTexture(JTex); } void cv::ocl::PyrLKOpticalFlow::sparse(const oclMat& prevImg, const oclMat& nextImg, const oclMat& prevPts, oclMat& nextPts, oclMat& status, oclMat* err) { if (prevPts.empty()) { nextPts.release(); status.release(); if (err) err->release(); return; } derivLambda = std::min(std::max(derivLambda, 0.0), 1.0); iters = std::min(std::max(iters, 0), 100); const int cn = prevImg.channels(); dim3 block, patch; calcPatchSize(winSize, cn, block, patch, isDeviceArch11_); CV_Assert(derivLambda >= 0); CV_Assert(maxLevel >= 0 && winSize.width > 2 && winSize.height > 2); CV_Assert(prevImg.size() == nextImg.size() && prevImg.type() == nextImg.type()); CV_Assert(patch.x > 0 && patch.x < 6 && patch.y > 0 && patch.y < 6); CV_Assert(prevPts.rows == 1 && prevPts.type() == CV_32FC2); if (useInitialFlow) CV_Assert(nextPts.size() == prevPts.size() && nextPts.type() == CV_32FC2); else ensureSizeIsEnough(1, prevPts.cols, prevPts.type(), nextPts); oclMat temp1 = (useInitialFlow ? nextPts : prevPts).reshape(1); oclMat temp2 = nextPts.reshape(1); //oclMat scalar(temp1.rows, temp1.cols, temp1.type(), Scalar(1.0f / (1 << maxLevel) / 2.0f)); multiply_cus(temp1, temp2, 1.0f / (1 << maxLevel) / 2.0f); //::multiply(temp1, 1.0f / (1 << maxLevel) / 2.0f, temp2); ensureSizeIsEnough(1, prevPts.cols, CV_8UC1, status); //status.setTo(Scalar::all(1)); setTo(status, Scalar::all(1)); //if (err) // ensureSizeIsEnough(1, prevPts.cols, CV_32FC1, *err); // build the image pyramids. prevPyr_.resize(maxLevel + 1); nextPyr_.resize(maxLevel + 1); if (cn == 1 || cn == 4) { //prevImg.convertTo(prevPyr_[0], CV_32F); //nextImg.convertTo(nextPyr_[0], CV_32F); convertTo(prevImg, prevPyr_[0], CV_32F); convertTo(nextImg, nextPyr_[0], CV_32F); } else { //oclMat buf_; // cvtColor(prevImg, buf_, COLOR_BGR2BGRA); // buf_.convertTo(prevPyr_[0], CV_32F); // cvtColor(nextImg, buf_, COLOR_BGR2BGRA); // buf_.convertTo(nextPyr_[0], CV_32F); } for (int level = 1; level <= maxLevel; ++level) { pyrDown_cus(prevPyr_[level - 1], prevPyr_[level]); pyrDown_cus(nextPyr_[level - 1], nextPyr_[level]); } // dI/dx ~ Ix, dI/dy ~ Iy for (int level = maxLevel; level >= 0; level--) { lkSparse_run(prevPyr_[level], nextPyr_[level], prevPts, nextPts, status, level == 0 && err ? err : 0, getMinEigenVals, prevPts.cols, level, /*block, */patch, winSize, iters); } clFinish(prevImg.clCxt->impl->clCmdQueue); } void lkDense_run(oclMat& I, oclMat& J, oclMat& u, oclMat& v, oclMat& prevU, oclMat& prevV, oclMat* err, Size winSize, int iters) { Context *clCxt = I.clCxt; string kernelName = "lkDense"; size_t localThreads[3] = { 16, 16, 1 }; size_t globalThreads[3] = { I.cols, I.rows, 1}; int cn = I.channels(); bool calcErr; if (err) { calcErr = true; } else { calcErr = false; } cl_mem ITex = bindTexture(I, I.depth(), cn); cl_mem JTex = bindTexture(J, J.depth(), cn); //int2 halfWin = {(winSize.width - 1) / 2, (winSize.height - 1) / 2}; //const int patchWidth = 16 + 2 * halfWin.x; //const int patchHeight = 16 + 2 * halfWin.y; //size_t smem_size = 3 * patchWidth * patchHeight * sizeof(int); vector > args; args.push_back( make_pair( sizeof(cl_mem), (void *)&ITex )); args.push_back( make_pair( sizeof(cl_mem), (void *)&JTex )); args.push_back( make_pair( sizeof(cl_mem), (void *)&u.data )); args.push_back( make_pair( sizeof(cl_int), (void *)&u.step )); args.push_back( make_pair( sizeof(cl_mem), (void *)&v.data )); args.push_back( make_pair( sizeof(cl_int), (void *)&v.step )); args.push_back( make_pair( sizeof(cl_mem), (void *)&prevU.data )); args.push_back( make_pair( sizeof(cl_int), (void *)&prevU.step )); args.push_back( make_pair( sizeof(cl_mem), (void *)&prevV.data )); args.push_back( make_pair( sizeof(cl_int), (void *)&prevV.step )); args.push_back( make_pair( sizeof(cl_int), (void *)&I.rows )); args.push_back( make_pair( sizeof(cl_int), (void *)&I.cols )); //args.push_back( make_pair( sizeof(cl_mem), (void *)&(*err).data )); //args.push_back( make_pair( sizeof(cl_int), (void *)&(*err).step )); args.push_back( make_pair( sizeof(cl_int), (void *)&winSize.width )); args.push_back( make_pair( sizeof(cl_int), (void *)&winSize.height )); args.push_back( make_pair( sizeof(cl_int), (void *)&iters )); args.push_back( make_pair( sizeof(cl_char), (void *)&calcErr )); openCLExecuteKernel2(clCxt, &pyrlk, kernelName, globalThreads, localThreads, args, I.channels(), I.depth(), CLFLUSH); releaseTexture(ITex); releaseTexture(JTex); } void cv::ocl::PyrLKOpticalFlow::dense(const oclMat& prevImg, const oclMat& nextImg, oclMat& u, oclMat& v, oclMat* err) { CV_Assert(prevImg.type() == CV_8UC1); CV_Assert(prevImg.size() == nextImg.size() && prevImg.type() == nextImg.type()); CV_Assert(maxLevel >= 0); CV_Assert(winSize.width > 2 && winSize.height > 2); if (err) err->create(prevImg.size(), CV_32FC1); prevPyr_.resize(maxLevel + 1); nextPyr_.resize(maxLevel + 1); prevPyr_[0] = prevImg; nextImg.convertTo(nextPyr_[0], CV_32F); for (int level = 1; level <= maxLevel; ++level) { pyrDown(prevPyr_[level - 1], prevPyr_[level]); pyrDown(nextPyr_[level - 1], nextPyr_[level]); } ensureSizeIsEnough(prevImg.size(), CV_32FC1, uPyr_[0]); ensureSizeIsEnough(prevImg.size(), CV_32FC1, vPyr_[0]); ensureSizeIsEnough(prevImg.size(), CV_32FC1, uPyr_[1]); ensureSizeIsEnough(prevImg.size(), CV_32FC1, vPyr_[1]); uPyr_[1].setTo(Scalar::all(0)); vPyr_[1].setTo(Scalar::all(0)); Size winSize2i(winSize.width, winSize.height); int idx = 0; for (int level = maxLevel; level >= 0; level--) { int idx2 = (idx + 1) & 1; lkDense_run(prevPyr_[level], nextPyr_[level], uPyr_[idx], vPyr_[idx], uPyr_[idx2], vPyr_[idx2], level == 0 ? err : 0, winSize2i, iters); if (level > 0) idx = idx2; } uPyr_[idx].copyTo(u); vPyr_[idx].copyTo(v); } #endif /* !defined (HAVE_CUDA) */