""" Stitching sample (advanced) =========================== Show how to use Stitcher API from python. """ # Python 2/3 compatibility from __future__ import print_function import argparse from collections import OrderedDict import cv2 as cv import numpy as np EXPOS_COMP_CHOICES = OrderedDict() EXPOS_COMP_CHOICES['gain_blocks'] = cv.detail.ExposureCompensator_GAIN_BLOCKS EXPOS_COMP_CHOICES['gain'] = cv.detail.ExposureCompensator_GAIN EXPOS_COMP_CHOICES['channel'] = cv.detail.ExposureCompensator_CHANNELS EXPOS_COMP_CHOICES['channel_blocks'] = cv.detail.ExposureCompensator_CHANNELS_BLOCKS EXPOS_COMP_CHOICES['no'] = cv.detail.ExposureCompensator_NO BA_COST_CHOICES = OrderedDict() BA_COST_CHOICES['ray'] = cv.detail_BundleAdjusterRay BA_COST_CHOICES['reproj'] = cv.detail_BundleAdjusterReproj BA_COST_CHOICES['affine'] = cv.detail_BundleAdjusterAffinePartial BA_COST_CHOICES['no'] = cv.detail_NoBundleAdjuster FEATURES_FIND_CHOICES = OrderedDict() try: FEATURES_FIND_CHOICES['surf'] = cv.xfeatures2d_SURF.create except AttributeError: print("SURF not available") # if SURF not available, ORB is default FEATURES_FIND_CHOICES['orb'] = cv.ORB.create try: FEATURES_FIND_CHOICES['sift'] = cv.xfeatures2d_SIFT.create except AttributeError: print("SIFT not available") try: FEATURES_FIND_CHOICES['brisk'] = cv.BRISK_create except AttributeError: print("BRISK not available") try: FEATURES_FIND_CHOICES['akaze'] = cv.AKAZE_create except AttributeError: print("AKAZE not available") SEAM_FIND_CHOICES = OrderedDict() SEAM_FIND_CHOICES['gc_color'] = cv.detail_GraphCutSeamFinder('COST_COLOR') SEAM_FIND_CHOICES['gc_colorgrad'] = cv.detail_GraphCutSeamFinder('COST_COLOR_GRAD') SEAM_FIND_CHOICES['dp_color'] = cv.detail_DpSeamFinder('COLOR') SEAM_FIND_CHOICES['dp_colorgrad'] = cv.detail_DpSeamFinder('COLOR_GRAD') SEAM_FIND_CHOICES['voronoi'] = cv.detail.SeamFinder_createDefault(cv.detail.SeamFinder_VORONOI_SEAM) SEAM_FIND_CHOICES['no'] = cv.detail.SeamFinder_createDefault(cv.detail.SeamFinder_NO) ESTIMATOR_CHOICES = OrderedDict() ESTIMATOR_CHOICES['homography'] = cv.detail_HomographyBasedEstimator ESTIMATOR_CHOICES['affine'] = cv.detail_AffineBasedEstimator WARP_CHOICES = ( 'spherical', 'plane', 'affine', 'cylindrical', 'fisheye', 'stereographic', 'compressedPlaneA2B1', 'compressedPlaneA1.5B1', 'compressedPlanePortraitA2B1', 'compressedPlanePortraitA1.5B1', 'paniniA2B1', 'paniniA1.5B1', 'paniniPortraitA2B1', 'paniniPortraitA1.5B1', 'mercator', 'transverseMercator', ) WAVE_CORRECT_CHOICES = ('horiz', 'no', 'vert',) BLEND_CHOICES = ('multiband', 'feather', 'no',) parser = argparse.ArgumentParser( prog="stitching_detailed.py", description="Rotation model images stitcher" ) parser.add_argument( 'img_names', nargs='+', help="Files to stitch", type=str ) parser.add_argument( '--try_cuda', action='store', default=False, help="Try to use CUDA. The default value is no. All default values are for CPU mode.", type=bool, dest='try_cuda' ) parser.add_argument( '--work_megapix', action='store', default=0.6, help="Resolution for image registration step. The default is 0.6 Mpx", type=float, dest='work_megapix' ) parser.add_argument( '--features', action='store', default=list(FEATURES_FIND_CHOICES.keys())[0], help="Type of features used for images matching. The default is '%s'." % FEATURES_FIND_CHOICES.keys(), choices=FEATURES_FIND_CHOICES.keys(), type=str, dest='features' ) parser.add_argument( '--matcher', action='store', default='homography', help="Matcher used for pairwise image matching.", choices=('homography', 'affine'), type=str, dest='matcher' ) parser.add_argument( '--estimator', action='store', default=list(ESTIMATOR_CHOICES.keys())[0], help="Type of estimator used for transformation estimation.", choices=ESTIMATOR_CHOICES.keys(), type=str, dest='estimator' ) parser.add_argument( '--match_conf', action='store', help="Confidence for feature matching step. The default is 0.3 for ORB and 0.65 for other feature types.", type=float, dest='match_conf' ) parser.add_argument( '--conf_thresh', action='store', default=1.0, help="Threshold for two images are from the same panorama confidence.The default is 1.0.", type=float, dest='conf_thresh' ) parser.add_argument( '--ba', action='store', default=list(BA_COST_CHOICES.keys())[0], help="Bundle adjustment cost function. The default is '%s'." % list(BA_COST_CHOICES.keys())[0], choices=BA_COST_CHOICES.keys(), type=str, dest='ba' ) parser.add_argument( '--ba_refine_mask', action='store', default='xxxxx', help="Set refinement mask for bundle adjustment. It looks like 'x_xxx', " "where 'x' means refine respective parameter and '_' means don't refine, " "and has the following format:. " "The default mask is 'xxxxx'. " "If bundle adjustment doesn't support estimation of selected parameter then " "the respective flag is ignored.", type=str, dest='ba_refine_mask' ) parser.add_argument( '--wave_correct', action='store', default=WAVE_CORRECT_CHOICES[0], help="Perform wave effect correction. The default is '%s'" % WAVE_CORRECT_CHOICES[0], choices=WAVE_CORRECT_CHOICES, type=str, dest='wave_correct' ) parser.add_argument( '--save_graph', action='store', default=None, help="Save matches graph represented in DOT language to file.", type=str, dest='save_graph' ) parser.add_argument( '--warp', action='store', default=WARP_CHOICES[0], help="Warp surface type. The default is '%s'." % WARP_CHOICES[0], choices=WARP_CHOICES, type=str, dest='warp' ) parser.add_argument( '--seam_megapix', action='store', default=0.1, help="Resolution for seam estimation step. The default is 0.1 Mpx.", type=float, dest='seam_megapix' ) parser.add_argument( '--seam', action='store', default=list(SEAM_FIND_CHOICES.keys())[0], help="Seam estimation method. The default is '%s'." % list(SEAM_FIND_CHOICES.keys())[0], choices=SEAM_FIND_CHOICES.keys(), type=str, dest='seam' ) parser.add_argument( '--compose_megapix', action='store', default=-1, help="Resolution for compositing step. Use -1 for original resolution. The default is -1", type=float, dest='compose_megapix' ) parser.add_argument( '--expos_comp', action='store', default=list(EXPOS_COMP_CHOICES.keys())[0], help="Exposure compensation method. The default is '%s'." % list(EXPOS_COMP_CHOICES.keys())[0], choices=EXPOS_COMP_CHOICES.keys(), type=str, dest='expos_comp' ) parser.add_argument( '--expos_comp_nr_feeds', action='store', default=1, help="Number of exposure compensation feed.", type=np.int32, dest='expos_comp_nr_feeds' ) parser.add_argument( '--expos_comp_nr_filtering', action='store', default=2, help="Number of filtering iterations of the exposure compensation gains.", type=float, dest='expos_comp_nr_filtering' ) parser.add_argument( '--expos_comp_block_size', action='store', default=32, help="BLock size in pixels used by the exposure compensator. The default is 32.", type=np.int32, dest='expos_comp_block_size' ) parser.add_argument( '--blend', action='store', default=BLEND_CHOICES[0], help="Blending method. The default is '%s'." % BLEND_CHOICES[0], choices=BLEND_CHOICES, type=str, dest='blend' ) parser.add_argument( '--blend_strength', action='store', default=5, help="Blending strength from [0,100] range. The default is 5", type=np.int32, dest='blend_strength' ) parser.add_argument( '--output', action='store', default='result.jpg', help="The default is 'result.jpg'", type=str, dest='output' ) parser.add_argument( '--timelapse', action='store', default=None, help="Output warped images separately as frames of a time lapse movie, " "with 'fixed_' prepended to input file names.", type=str, dest='timelapse' ) parser.add_argument( '--rangewidth', action='store', default=-1, help="uses range_width to limit number of images to match with.", type=int, dest='rangewidth' ) __doc__ += '\n' + parser.format_help() def get_matcher(args): try_cuda = args.try_cuda matcher_type = args.matcher if args.match_conf is None: if args.features == 'orb': match_conf = 0.3 else: match_conf = 0.65 else: match_conf = args.match_conf range_width = args.rangewidth if matcher_type == "affine": matcher = cv.detail_AffineBestOf2NearestMatcher(False, try_cuda, match_conf) elif range_width == -1: matcher = cv.detail.BestOf2NearestMatcher_create(try_cuda, match_conf) else: matcher = cv.detail.BestOf2NearestRangeMatcher_create(range_width, try_cuda, match_conf) return matcher def get_compensator(args): expos_comp_type = EXPOS_COMP_CHOICES[args.expos_comp] expos_comp_nr_feeds = args.expos_comp_nr_feeds expos_comp_block_size = args.expos_comp_block_size # expos_comp_nr_filtering = args.expos_comp_nr_filtering if expos_comp_type == cv.detail.ExposureCompensator_CHANNELS: compensator = cv.detail_ChannelsCompensator(expos_comp_nr_feeds) # compensator.setNrGainsFilteringIterations(expos_comp_nr_filtering) elif expos_comp_type == cv.detail.ExposureCompensator_CHANNELS_BLOCKS: compensator = cv.detail_BlocksChannelsCompensator( expos_comp_block_size, expos_comp_block_size, expos_comp_nr_feeds ) # compensator.setNrGainsFilteringIterations(expos_comp_nr_filtering) else: compensator = cv.detail.ExposureCompensator_createDefault(expos_comp_type) return compensator def main(): args = parser.parse_args() img_names = args.img_names print(img_names) work_megapix = args.work_megapix seam_megapix = args.seam_megapix compose_megapix = args.compose_megapix conf_thresh = args.conf_thresh ba_refine_mask = args.ba_refine_mask wave_correct = args.wave_correct if wave_correct == 'no': do_wave_correct = False else: do_wave_correct = True if args.save_graph is None: save_graph = False else: save_graph = True warp_type = args.warp blend_type = args.blend blend_strength = args.blend_strength result_name = args.output if args.timelapse is not None: timelapse = True if args.timelapse == "as_is": timelapse_type = cv.detail.Timelapser_AS_IS elif args.timelapse == "crop": timelapse_type = cv.detail.Timelapser_CROP else: print("Bad timelapse method") exit() else: timelapse = False finder = FEATURES_FIND_CHOICES[args.features]() seam_work_aspect = 1 full_img_sizes = [] features = [] images = [] is_work_scale_set = False is_seam_scale_set = False is_compose_scale_set = False for name in img_names: full_img = cv.imread(cv.samples.findFile(name)) if full_img is None: print("Cannot read image ", name) exit() full_img_sizes.append((full_img.shape[1], full_img.shape[0])) if work_megapix < 0: img = full_img work_scale = 1 is_work_scale_set = True else: if is_work_scale_set is False: work_scale = min(1.0, np.sqrt(work_megapix * 1e6 / (full_img.shape[0] * full_img.shape[1]))) is_work_scale_set = True img = cv.resize(src=full_img, dsize=None, fx=work_scale, fy=work_scale, interpolation=cv.INTER_LINEAR_EXACT) if is_seam_scale_set is False: seam_scale = min(1.0, np.sqrt(seam_megapix * 1e6 / (full_img.shape[0] * full_img.shape[1]))) seam_work_aspect = seam_scale / work_scale is_seam_scale_set = True img_feat = cv.detail.computeImageFeatures2(finder, img) features.append(img_feat) img = cv.resize(src=full_img, dsize=None, fx=seam_scale, fy=seam_scale, interpolation=cv.INTER_LINEAR_EXACT) images.append(img) matcher = get_matcher(args) p = matcher.apply2(features) matcher.collectGarbage() if save_graph: with open(args.save_graph, 'w') as fh: fh.write(cv.detail.matchesGraphAsString(img_names, p, conf_thresh)) indices = cv.detail.leaveBiggestComponent(features, p, 0.3) img_subset = [] img_names_subset = [] full_img_sizes_subset = [] for i in range(len(indices)): img_names_subset.append(img_names[indices[i, 0]]) img_subset.append(images[indices[i, 0]]) full_img_sizes_subset.append(full_img_sizes[indices[i, 0]]) images = img_subset img_names = img_names_subset full_img_sizes = full_img_sizes_subset num_images = len(img_names) if num_images < 2: print("Need more images") exit() estimator = ESTIMATOR_CHOICES[args.estimator]() b, cameras = estimator.apply(features, p, None) if not b: print("Homography estimation failed.") exit() for cam in cameras: cam.R = cam.R.astype(np.float32) adjuster = BA_COST_CHOICES[args.ba]() adjuster.setConfThresh(1) refine_mask = np.zeros((3, 3), np.uint8) if ba_refine_mask[0] == 'x': refine_mask[0, 0] = 1 if ba_refine_mask[1] == 'x': refine_mask[0, 1] = 1 if ba_refine_mask[2] == 'x': refine_mask[0, 2] = 1 if ba_refine_mask[3] == 'x': refine_mask[1, 1] = 1 if ba_refine_mask[4] == 'x': refine_mask[1, 2] = 1 adjuster.setRefinementMask(refine_mask) b, cameras = adjuster.apply(features, p, cameras) if not b: print("Camera parameters adjusting failed.") exit() focals = [] for cam in cameras: focals.append(cam.focal) sorted(focals) if len(focals) % 2 == 1: warped_image_scale = focals[len(focals) // 2] else: warped_image_scale = (focals[len(focals) // 2] + focals[len(focals) // 2 - 1]) / 2 if do_wave_correct: rmats = [] for cam in cameras: rmats.append(np.copy(cam.R)) rmats = cv.detail.waveCorrect(rmats, cv.detail.WAVE_CORRECT_HORIZ) for idx, cam in enumerate(cameras): cam.R = rmats[idx] corners = [] masks_warped = [] images_warped = [] sizes = [] masks = [] for i in range(0, num_images): um = cv.UMat(255 * np.ones((images[i].shape[0], images[i].shape[1]), np.uint8)) masks.append(um) warper = cv.PyRotationWarper(warp_type, warped_image_scale * seam_work_aspect) # warper could be nullptr? for idx in range(0, num_images): K = cameras[idx].K().astype(np.float32) swa = seam_work_aspect K[0, 0] *= swa K[0, 2] *= swa K[1, 1] *= swa K[1, 2] *= swa corner, image_wp = warper.warp(images[idx], K, cameras[idx].R, cv.INTER_LINEAR, cv.BORDER_REFLECT) corners.append(corner) sizes.append((image_wp.shape[1], image_wp.shape[0])) images_warped.append(image_wp) p, mask_wp = warper.warp(masks[idx], K, cameras[idx].R, cv.INTER_NEAREST, cv.BORDER_CONSTANT) masks_warped.append(mask_wp.get()) images_warped_f = [] for img in images_warped: imgf = img.astype(np.float32) images_warped_f.append(imgf) compensator = get_compensator(args) compensator.feed(corners=corners, images=images_warped, masks=masks_warped) seam_finder = SEAM_FIND_CHOICES[args.seam] seam_finder.find(images_warped_f, corners, masks_warped) compose_scale = 1 corners = [] sizes = [] blender = None timelapser = None # https://github.com/opencv/opencv/blob/master/samples/cpp/stitching_detailed.cpp#L725 ? for idx, name in enumerate(img_names): full_img = cv.imread(name) if not is_compose_scale_set: if compose_megapix > 0: compose_scale = min(1.0, np.sqrt(compose_megapix * 1e6 / (full_img.shape[0] * full_img.shape[1]))) is_compose_scale_set = True compose_work_aspect = compose_scale / work_scale warped_image_scale *= compose_work_aspect warper = cv.PyRotationWarper(warp_type, warped_image_scale) for i in range(0, len(img_names)): cameras[i].focal *= compose_work_aspect cameras[i].ppx *= compose_work_aspect cameras[i].ppy *= compose_work_aspect sz = (full_img_sizes[i][0] * compose_scale, full_img_sizes[i][1] * compose_scale) K = cameras[i].K().astype(np.float32) roi = warper.warpRoi(sz, K, cameras[i].R) corners.append(roi[0:2]) sizes.append(roi[2:4]) if abs(compose_scale - 1) > 1e-1: img = cv.resize(src=full_img, dsize=None, fx=compose_scale, fy=compose_scale, interpolation=cv.INTER_LINEAR_EXACT) else: img = full_img _img_size = (img.shape[1], img.shape[0]) K = cameras[idx].K().astype(np.float32) corner, image_warped = warper.warp(img, K, cameras[idx].R, cv.INTER_LINEAR, cv.BORDER_REFLECT) mask = 255 * np.ones((img.shape[0], img.shape[1]), np.uint8) p, mask_warped = warper.warp(mask, K, cameras[idx].R, cv.INTER_NEAREST, cv.BORDER_CONSTANT) compensator.apply(idx, corners[idx], image_warped, mask_warped) image_warped_s = image_warped.astype(np.int16) dilated_mask = cv.dilate(masks_warped[idx], None) seam_mask = cv.resize(dilated_mask, (mask_warped.shape[1], mask_warped.shape[0]), 0, 0, cv.INTER_LINEAR_EXACT) mask_warped = cv.bitwise_and(seam_mask, mask_warped) if blender is None and not timelapse: blender = cv.detail.Blender_createDefault(cv.detail.Blender_NO) dst_sz = cv.detail.resultRoi(corners=corners, sizes=sizes) blend_width = np.sqrt(dst_sz[2] * dst_sz[3]) * blend_strength / 100 if blend_width < 1: blender = cv.detail.Blender_createDefault(cv.detail.Blender_NO) elif blend_type == "multiband": blender = cv.detail_MultiBandBlender() blender.setNumBands((np.log(blend_width) / np.log(2.) - 1.).astype(np.int)) elif blend_type == "feather": blender = cv.detail_FeatherBlender() blender.setSharpness(1. / blend_width) blender.prepare(dst_sz) elif timelapser is None and timelapse: timelapser = cv.detail.Timelapser_createDefault(timelapse_type) timelapser.initialize(corners, sizes) if timelapse: ma_tones = np.ones((image_warped_s.shape[0], image_warped_s.shape[1]), np.uint8) timelapser.process(image_warped_s, ma_tones, corners[idx]) pos_s = img_names[idx].rfind("/") if pos_s == -1: fixed_file_name = "fixed_" + img_names[idx] else: fixed_file_name = img_names[idx][:pos_s + 1] + "fixed_" + img_names[idx][pos_s + 1:] cv.imwrite(fixed_file_name, timelapser.getDst()) else: blender.feed(cv.UMat(image_warped_s), mask_warped, corners[idx]) if not timelapse: result = None result_mask = None result, result_mask = blender.blend(result, result_mask) cv.imwrite(result_name, result) zoom_x = 600.0 / result.shape[1] dst = cv.normalize(src=result, dst=None, alpha=255., norm_type=cv.NORM_MINMAX, dtype=cv.CV_8U) dst = cv.resize(dst, dsize=None, fx=zoom_x, fy=zoom_x) cv.imshow(result_name, dst) cv.waitKey() print("Done") if __name__ == '__main__': print(__doc__) main() cv.destroyAllWindows()