/*********************************************************************** * Software License Agreement (BSD License) * * Copyright 2008-2011 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. * Copyright 2008-2011 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. * * THE BSD LICENSE * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *************************************************************************/ #ifndef OPENCV_FLANN_HIERARCHICAL_CLUSTERING_INDEX_H_ #define OPENCV_FLANN_HIERARCHICAL_CLUSTERING_INDEX_H_ #include #include #include #include #include #include #include "general.h" #include "nn_index.h" #include "dist.h" #include "matrix.h" #include "result_set.h" #include "heap.h" #include "allocator.h" #include "random.h" #include "saving.h" namespace cvflann { struct HierarchicalClusteringIndexParams : public IndexParams { HierarchicalClusteringIndexParams(int branching = 32, flann_centers_init_t centers_init = FLANN_CENTERS_RANDOM, int trees = 4, int leaf_size = 100) { (*this)["algorithm"] = FLANN_INDEX_HIERARCHICAL; // The branching factor used in the hierarchical clustering (*this)["branching"] = branching; // Algorithm used for picking the initial cluster centers (*this)["centers_init"] = centers_init; // number of parallel trees to build (*this)["trees"] = trees; // maximum leaf size (*this)["leaf_size"] = leaf_size; } }; /** * Hierarchical index * * Contains a tree constructed through a hierarchical clustering * and other information for indexing a set of points for nearest-neighbour matching. */ template class HierarchicalClusteringIndex : public NNIndex { public: typedef typename Distance::ElementType ElementType; typedef typename Distance::ResultType DistanceType; private: typedef void (HierarchicalClusteringIndex::* centersAlgFunction)(int, int*, int, int*, int&); /** * The function used for choosing the cluster centers. */ centersAlgFunction chooseCenters; /** * Chooses the initial centers in the k-means clustering in a random manner. * * Params: * k = number of centers * vecs = the dataset of points * indices = indices in the dataset * indices_length = length of indices vector * */ void chooseCentersRandom(int k, int* dsindices, int indices_length, int* centers, int& centers_length) { UniqueRandom r(indices_length); int index; for (index=0; index=0 && rnd < n); centers[0] = dsindices[rnd]; int index; for (index=1; indexbest_val) { best_val = dist; best_index = j; } } if (best_index!=-1) { centers[index] = dsindices[best_index]; } else { break; } } centers_length = index; } /** * Chooses the initial centers in the k-means using the algorithm * proposed in the KMeans++ paper: * Arthur, David; Vassilvitskii, Sergei - k-means++: The Advantages of Careful Seeding * * Implementation of this function was converted from the one provided in Arthur's code. * * Params: * k = number of centers * vecs = the dataset of points * indices = indices in the dataset * Returns: */ void chooseCentersKMeanspp(int k, int* dsindices, int indices_length, int* centers, int& centers_length) { int n = indices_length; double currentPot = 0; DistanceType* closestDistSq = new DistanceType[n]; // Choose one random center and set the closestDistSq values int index = rand_int(n); assert(index >=0 && index < n); centers[0] = dsindices[index]; for (int i = 0; i < n; i++) { closestDistSq[i] = distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols); currentPot += closestDistSq[i]; } const int numLocalTries = 1; // Choose each center int centerCount; for (centerCount = 1; centerCount < k; centerCount++) { // Repeat several trials double bestNewPot = -1; int bestNewIndex = 0; for (int localTrial = 0; localTrial < numLocalTries; localTrial++) { // Choose our center - have to be slightly careful to return a valid answer even accounting // for possible rounding errors double randVal = rand_double(currentPot); for (index = 0; index < n-1; index++) { if (randVal <= closestDistSq[index]) break; else randVal -= closestDistSq[index]; } // Compute the new potential double newPot = 0; for (int i = 0; i < n; i++) newPot += std::min( distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols), closestDistSq[i] ); // Store the best result if ((bestNewPot < 0)||(newPot < bestNewPot)) { bestNewPot = newPot; bestNewIndex = index; } } // Add the appropriate center centers[centerCount] = dsindices[bestNewIndex]; currentPot = bestNewPot; for (int i = 0; i < n; i++) closestDistSq[i] = std::min( distance(dataset[dsindices[i]], dataset[dsindices[bestNewIndex]], dataset.cols), closestDistSq[i] ); } centers_length = centerCount; delete[] closestDistSq; } public: /** * Index constructor * * Params: * inputData = dataset with the input features * params = parameters passed to the hierarchical k-means algorithm */ HierarchicalClusteringIndex(const Matrix& inputData, const IndexParams& index_params = HierarchicalClusteringIndexParams(), Distance d = Distance()) : dataset(inputData), params(index_params), root(NULL), indices(NULL), distance(d) { memoryCounter = 0; size_ = dataset.rows; veclen_ = dataset.cols; branching_ = get_param(params,"branching",32); centers_init_ = get_param(params,"centers_init", FLANN_CENTERS_RANDOM); trees_ = get_param(params,"trees",4); leaf_size_ = get_param(params,"leaf_size",100); if (centers_init_==FLANN_CENTERS_RANDOM) { chooseCenters = &HierarchicalClusteringIndex::chooseCentersRandom; } else if (centers_init_==FLANN_CENTERS_GONZALES) { chooseCenters = &HierarchicalClusteringIndex::chooseCentersGonzales; } else if (centers_init_==FLANN_CENTERS_KMEANSPP) { chooseCenters = &HierarchicalClusteringIndex::chooseCentersKMeanspp; } else { throw FLANNException("Unknown algorithm for choosing initial centers."); } trees_ = get_param(params,"trees",4); root = new NodePtr[trees_]; indices = new int*[trees_]; } HierarchicalClusteringIndex(const HierarchicalClusteringIndex&); HierarchicalClusteringIndex& operator=(const HierarchicalClusteringIndex&); /** * Index destructor. * * Release the memory used by the index. */ virtual ~HierarchicalClusteringIndex() { if (indices!=NULL) { delete[] indices; } } /** * Returns size of index. */ size_t size() const { return size_; } /** * Returns the length of an index feature. */ size_t veclen() const { return veclen_; } /** * Computes the inde memory usage * Returns: memory used by the index */ int usedMemory() const { return pool.usedMemory+pool.wastedMemory+memoryCounter; } /** * Builds the index */ void buildIndex() { if (branching_<2) { throw FLANNException("Branching factor must be at least 2"); } for (int i=0; i(); computeClustering(root[i], indices[i], (int)size_, branching_,0); } } flann_algorithm_t getType() const { return FLANN_INDEX_HIERARCHICAL; } void saveIndex(FILE* stream) { save_value(stream, branching_); save_value(stream, trees_); save_value(stream, centers_init_); save_value(stream, leaf_size_); save_value(stream, memoryCounter); for (int i=0; i& result, const ElementType* vec, const SearchParams& searchParams) { int maxChecks = get_param(searchParams,"checks",32); // Priority queue storing intermediate branches in the best-bin-first search Heap* heap = new Heap((int)size_); std::vector checked(size_,false); int checks = 0; for (int i=0; ipopMin(branch) && (checks BranchSt; void save_tree(FILE* stream, NodePtr node, int num) { save_value(stream, *node); if (node->childs==NULL) { int indices_offset = (int)(node->indices - indices[num]); save_value(stream, indices_offset); } else { for(int i=0; ichilds[i], num); } } } void load_tree(FILE* stream, NodePtr& node, int num) { node = pool.allocate(); load_value(stream, *node); if (node->childs==NULL) { int indices_offset; load_value(stream, indices_offset); node->indices = indices[num] + indices_offset; } else { node->childs = pool.allocate(branching_); for(int i=0; ichilds[i], num); } } } void computeLabels(int* dsindices, int indices_length, int* centers, int centers_length, int* labels, DistanceType& cost) { cost = 0; for (int i=0; inew_dist) { labels[i] = j; dist = new_dist; } } cost += dist; } } /** * The method responsible with actually doing the recursive hierarchical * clustering * * Params: * node = the node to cluster * indices = indices of the points belonging to the current node * branching = the branching factor to use in the clustering * * TODO: for 1-sized clusters don't store a cluster center (it's the same as the single cluster point) */ void computeClustering(NodePtr node, int* dsindices, int indices_length, int branching, int level) { node->size = indices_length; node->level = level; if (indices_length < leaf_size_) { // leaf node node->indices = dsindices; std::sort(node->indices,node->indices+indices_length); node->childs = NULL; return; } std::vector centers(branching); std::vector labels(indices_length); int centers_length; (this->*chooseCenters)(branching, dsindices, indices_length, ¢ers[0], centers_length); if (centers_lengthindices = dsindices; std::sort(node->indices,node->indices+indices_length); node->childs = NULL; return; } // assign points to clusters DistanceType cost; computeLabels(dsindices, indices_length, ¢ers[0], centers_length, &labels[0], cost); node->childs = pool.allocate(branching); int start = 0; int end = start; for (int i=0; ichilds[i] = pool.allocate(); node->childs[i]->pivot = centers[i]; node->childs[i]->indices = NULL; computeClustering(node->childs[i],dsindices+start, end-start, branching, level+1); start=end; } } /** * Performs one descent in the hierarchical k-means tree. The branches not * visited are stored in a priority queue. * * Params: * node = node to explore * result = container for the k-nearest neighbors found * vec = query points * checks = how many points in the dataset have been checked so far * maxChecks = maximum dataset points to checks */ void findNN(NodePtr node, ResultSet& result, const ElementType* vec, int& checks, int maxChecks, Heap* heap, std::vector& checked) { if (node->childs==NULL) { if (checks>=maxChecks) { if (result.full()) return; } for (int i=0; isize; ++i) { int index = node->indices[i]; if (!checked[index]) { DistanceType dist = distance(dataset[index], vec, veclen_); result.addPoint(dist, index); checked[index] = true; ++checks; } } } else { DistanceType* domain_distances = new DistanceType[branching_]; int best_index = 0; domain_distances[best_index] = distance(vec, dataset[node->childs[best_index]->pivot], veclen_); for (int i=1; ichilds[i]->pivot], veclen_); if (domain_distances[i]insert(BranchSt(node->childs[i],domain_distances[i])); } } delete[] domain_distances; findNN(node->childs[best_index],result,vec, checks, maxChecks, heap, checked); } } private: /** * The dataset used by this index */ const Matrix dataset; /** * Parameters used by this index */ IndexParams params; /** * Number of features in the dataset. */ size_t size_; /** * Length of each feature. */ size_t veclen_; /** * The root node in the tree. */ NodePtr* root; /** * Array of indices to vectors in the dataset. */ int** indices; /** * The distance */ Distance distance; /** * Pooled memory allocator. * * Using a pooled memory allocator is more efficient * than allocating memory directly when there is a large * number small of memory allocations. */ PooledAllocator pool; /** * Memory occupied by the index. */ int memoryCounter; /** index parameters */ int branching_; int trees_; flann_centers_init_t centers_init_; int leaf_size_; }; } #endif /* OPENCV_FLANN_HIERARCHICAL_CLUSTERING_INDEX_H_ */