/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #ifdef HAVE_CUDA using namespace cvtest; ////////////////////////////////////////////////////// // BroxOpticalFlow //#define BROX_DUMP struct BroxOpticalFlow : testing::TestWithParam { cv::gpu::DeviceInfo devInfo; virtual void SetUp() { devInfo = GetParam(); cv::gpu::setDevice(devInfo.deviceID()); } }; GPU_TEST_P(BroxOpticalFlow, Regression) { cv::Mat frame0 = readImageType("opticalflow/frame0.png", CV_32FC1); ASSERT_FALSE(frame0.empty()); cv::Mat frame1 = readImageType("opticalflow/frame1.png", CV_32FC1); ASSERT_FALSE(frame1.empty()); cv::gpu::BroxOpticalFlow brox(0.197f /*alpha*/, 50.0f /*gamma*/, 0.8f /*scale_factor*/, 10 /*inner_iterations*/, 77 /*outer_iterations*/, 10 /*solver_iterations*/); cv::gpu::GpuMat u; cv::gpu::GpuMat v; brox(loadMat(frame0), loadMat(frame1), u, v); std::string fname(cvtest::TS::ptr()->get_data_path()); if (devInfo.majorVersion() >= 2) fname += "opticalflow/brox_optical_flow_cc20.bin"; else fname += "opticalflow/brox_optical_flow.bin"; #ifndef BROX_DUMP std::ifstream f(fname.c_str(), std::ios_base::binary); int rows, cols; f.read((char*) &rows, sizeof(rows)); f.read((char*) &cols, sizeof(cols)); cv::Mat u_gold(rows, cols, CV_32FC1); for (int i = 0; i < u_gold.rows; ++i) f.read(u_gold.ptr(i), u_gold.cols * sizeof(float)); cv::Mat v_gold(rows, cols, CV_32FC1); for (int i = 0; i < v_gold.rows; ++i) f.read(v_gold.ptr(i), v_gold.cols * sizeof(float)); EXPECT_MAT_NEAR(u_gold, u, 0); EXPECT_MAT_NEAR(v_gold, v, 0); #else std::ofstream f(fname.c_str(), std::ios_base::binary); f.write((char*) &u.rows, sizeof(u.rows)); f.write((char*) &u.cols, sizeof(u.cols)); cv::Mat h_u(u); cv::Mat h_v(v); for (int i = 0; i < u.rows; ++i) f.write(h_u.ptr(i), u.cols * sizeof(float)); for (int i = 0; i < v.rows; ++i) f.write(h_v.ptr(i), v.cols * sizeof(float)); #endif } GPU_TEST_P(BroxOpticalFlow, OpticalFlowNan) { cv::Mat frame0 = readImageType("opticalflow/frame0.png", CV_32FC1); ASSERT_FALSE(frame0.empty()); cv::Mat frame1 = readImageType("opticalflow/frame1.png", CV_32FC1); ASSERT_FALSE(frame1.empty()); cv::Mat r_frame0, r_frame1; cv::resize(frame0, r_frame0, cv::Size(1380,1000)); cv::resize(frame1, r_frame1, cv::Size(1380,1000)); cv::gpu::BroxOpticalFlow brox(0.197f /*alpha*/, 50.0f /*gamma*/, 0.8f /*scale_factor*/, 5 /*inner_iterations*/, 150 /*outer_iterations*/, 10 /*solver_iterations*/); cv::gpu::GpuMat u; cv::gpu::GpuMat v; brox(loadMat(r_frame0), loadMat(r_frame1), u, v); cv::Mat h_u, h_v; u.download(h_u); v.download(h_v); EXPECT_TRUE(cv::checkRange(h_u)); EXPECT_TRUE(cv::checkRange(h_v)); }; INSTANTIATE_TEST_CASE_P(GPU_Video, BroxOpticalFlow, ALL_DEVICES); ////////////////////////////////////////////////////// // GoodFeaturesToTrack namespace { IMPLEMENT_PARAM_CLASS(MinDistance, double) } PARAM_TEST_CASE(GoodFeaturesToTrack, cv::gpu::DeviceInfo, MinDistance) { cv::gpu::DeviceInfo devInfo; double minDistance; virtual void SetUp() { devInfo = GET_PARAM(0); minDistance = GET_PARAM(1); cv::gpu::setDevice(devInfo.deviceID()); } }; GPU_TEST_P(GoodFeaturesToTrack, Accuracy) { cv::Mat image = readImage("opticalflow/frame0.png", cv::IMREAD_GRAYSCALE); ASSERT_FALSE(image.empty()); int maxCorners = 1000; double qualityLevel = 0.01; cv::gpu::GoodFeaturesToTrackDetector_GPU detector(maxCorners, qualityLevel, minDistance); cv::gpu::GpuMat d_pts; detector(loadMat(image), d_pts); ASSERT_FALSE(d_pts.empty()); std::vector pts(d_pts.cols); cv::Mat pts_mat(1, d_pts.cols, CV_32FC2, (void*) &pts[0]); d_pts.download(pts_mat); std::vector pts_gold; cv::goodFeaturesToTrack(image, pts_gold, maxCorners, qualityLevel, minDistance); ASSERT_EQ(pts_gold.size(), pts.size()); size_t mistmatch = 0; for (size_t i = 0; i < pts.size(); ++i) { cv::Point2i a = pts_gold[i]; cv::Point2i b = pts[i]; bool eq = std::abs(a.x - b.x) < 1 && std::abs(a.y - b.y) < 1; if (!eq) ++mistmatch; } double bad_ratio = static_cast(mistmatch) / pts.size(); ASSERT_LE(bad_ratio, 0.01); } GPU_TEST_P(GoodFeaturesToTrack, EmptyCorners) { int maxCorners = 1000; double qualityLevel = 0.01; cv::gpu::GoodFeaturesToTrackDetector_GPU detector(maxCorners, qualityLevel, minDistance); cv::gpu::GpuMat src(100, 100, CV_8UC1, cv::Scalar::all(0)); cv::gpu::GpuMat corners(1, maxCorners, CV_32FC2); detector(src, corners); ASSERT_TRUE(corners.empty()); } INSTANTIATE_TEST_CASE_P(GPU_Video, GoodFeaturesToTrack, testing::Combine( ALL_DEVICES, testing::Values(MinDistance(0.0), MinDistance(3.0)))); ////////////////////////////////////////////////////// // PyrLKOpticalFlow namespace { IMPLEMENT_PARAM_CLASS(UseGray, bool) } PARAM_TEST_CASE(PyrLKOpticalFlow, cv::gpu::DeviceInfo, UseGray) { cv::gpu::DeviceInfo devInfo; bool useGray; virtual void SetUp() { devInfo = GET_PARAM(0); useGray = GET_PARAM(1); cv::gpu::setDevice(devInfo.deviceID()); } }; GPU_TEST_P(PyrLKOpticalFlow, Sparse) { cv::Mat frame0 = readImage("opticalflow/frame0.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR); ASSERT_FALSE(frame0.empty()); cv::Mat frame1 = readImage("opticalflow/frame1.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR); ASSERT_FALSE(frame1.empty()); cv::Mat gray_frame; if (useGray) gray_frame = frame0; else cv::cvtColor(frame0, gray_frame, cv::COLOR_BGR2GRAY); std::vector pts; cv::goodFeaturesToTrack(gray_frame, pts, 1000, 0.01, 0.0); cv::gpu::GpuMat d_pts; cv::Mat pts_mat(1, (int) pts.size(), CV_32FC2, (void*) &pts[0]); d_pts.upload(pts_mat); cv::gpu::PyrLKOpticalFlow pyrLK; cv::gpu::GpuMat d_nextPts; cv::gpu::GpuMat d_status; pyrLK.sparse(loadMat(frame0), loadMat(frame1), d_pts, d_nextPts, d_status); std::vector nextPts(d_nextPts.cols); cv::Mat nextPts_mat(1, d_nextPts.cols, CV_32FC2, (void*) &nextPts[0]); d_nextPts.download(nextPts_mat); std::vector status(d_status.cols); cv::Mat status_mat(1, d_status.cols, CV_8UC1, (void*) &status[0]); d_status.download(status_mat); std::vector nextPts_gold; std::vector status_gold; cv::calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts_gold, status_gold, cv::noArray()); ASSERT_EQ(nextPts_gold.size(), nextPts.size()); ASSERT_EQ(status_gold.size(), status.size()); size_t mistmatch = 0; for (size_t i = 0; i < nextPts.size(); ++i) { cv::Point2i a = nextPts[i]; cv::Point2i b = nextPts_gold[i]; if (status[i] != status_gold[i]) { ++mistmatch; continue; } if (status[i]) { bool eq = std::abs(a.x - b.x) <= 1 && std::abs(a.y - b.y) <= 1; if (!eq) ++mistmatch; } } double bad_ratio = static_cast(mistmatch) / nextPts.size(); ASSERT_LE(bad_ratio, 0.01); } INSTANTIATE_TEST_CASE_P(GPU_Video, PyrLKOpticalFlow, testing::Combine( ALL_DEVICES, testing::Values(UseGray(true), UseGray(false)))); ////////////////////////////////////////////////////// // FarnebackOpticalFlow namespace { IMPLEMENT_PARAM_CLASS(PyrScale, double) IMPLEMENT_PARAM_CLASS(PolyN, int) CV_FLAGS(FarnebackOptFlowFlags, 0, OPTFLOW_FARNEBACK_GAUSSIAN) IMPLEMENT_PARAM_CLASS(UseInitFlow, bool) } PARAM_TEST_CASE(FarnebackOpticalFlow, cv::gpu::DeviceInfo, PyrScale, PolyN, FarnebackOptFlowFlags, UseInitFlow) { cv::gpu::DeviceInfo devInfo; double pyrScale; int polyN; int flags; bool useInitFlow; virtual void SetUp() { devInfo = GET_PARAM(0); pyrScale = GET_PARAM(1); polyN = GET_PARAM(2); flags = GET_PARAM(3); useInitFlow = GET_PARAM(4); cv::gpu::setDevice(devInfo.deviceID()); } }; GPU_TEST_P(FarnebackOpticalFlow, Accuracy) { cv::Mat frame0 = readImage("opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE); ASSERT_FALSE(frame0.empty()); cv::Mat frame1 = readImage("opticalflow/rubberwhale2.png", cv::IMREAD_GRAYSCALE); ASSERT_FALSE(frame1.empty()); double polySigma = polyN <= 5 ? 1.1 : 1.5; cv::gpu::FarnebackOpticalFlow farn; farn.pyrScale = pyrScale; farn.polyN = polyN; farn.polySigma = polySigma; farn.flags = flags; cv::gpu::GpuMat d_flowx, d_flowy; farn(loadMat(frame0), loadMat(frame1), d_flowx, d_flowy); cv::Mat flow; if (useInitFlow) { cv::Mat flowxy[] = {cv::Mat(d_flowx), cv::Mat(d_flowy)}; cv::merge(flowxy, 2, flow); farn.flags |= cv::OPTFLOW_USE_INITIAL_FLOW; farn(loadMat(frame0), loadMat(frame1), d_flowx, d_flowy); } cv::calcOpticalFlowFarneback( frame0, frame1, flow, farn.pyrScale, farn.numLevels, farn.winSize, farn.numIters, farn.polyN, farn.polySigma, farn.flags); std::vector flowxy; cv::split(flow, flowxy); EXPECT_MAT_SIMILAR(flowxy[0], d_flowx, 0.1); EXPECT_MAT_SIMILAR(flowxy[1], d_flowy, 0.1); } INSTANTIATE_TEST_CASE_P(GPU_Video, FarnebackOpticalFlow, testing::Combine( ALL_DEVICES, testing::Values(PyrScale(0.3), PyrScale(0.5), PyrScale(0.8)), testing::Values(PolyN(5), PolyN(7)), testing::Values(FarnebackOptFlowFlags(0), FarnebackOptFlowFlags(cv::OPTFLOW_FARNEBACK_GAUSSIAN)), testing::Values(UseInitFlow(false), UseInitFlow(true)))); ////////////////////////////////////////////////////// // OpticalFlowDual_TVL1 PARAM_TEST_CASE(OpticalFlowDual_TVL1, cv::gpu::DeviceInfo, UseRoi) { cv::gpu::DeviceInfo devInfo; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); useRoi = GET_PARAM(1); cv::gpu::setDevice(devInfo.deviceID()); } }; GPU_TEST_P(OpticalFlowDual_TVL1, Accuracy) { cv::Mat frame0 = readImage("opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE); ASSERT_FALSE(frame0.empty()); cv::Mat frame1 = readImage("opticalflow/rubberwhale2.png", cv::IMREAD_GRAYSCALE); ASSERT_FALSE(frame1.empty()); cv::gpu::OpticalFlowDual_TVL1_GPU d_alg; cv::gpu::GpuMat d_flowx = createMat(frame0.size(), CV_32FC1, useRoi); cv::gpu::GpuMat d_flowy = createMat(frame0.size(), CV_32FC1, useRoi); d_alg(loadMat(frame0, useRoi), loadMat(frame1, useRoi), d_flowx, d_flowy); cv::Ptr alg = cv::createOptFlow_DualTVL1(); cv::Mat flow; alg->calc(frame0, frame1, flow); cv::Mat gold[2]; cv::split(flow, gold); EXPECT_MAT_SIMILAR(gold[0], d_flowx, 3e-3); EXPECT_MAT_SIMILAR(gold[1], d_flowy, 3e-3); } INSTANTIATE_TEST_CASE_P(GPU_Video, OpticalFlowDual_TVL1, testing::Combine( ALL_DEVICES, WHOLE_SUBMAT)); ////////////////////////////////////////////////////// // OpticalFlowBM namespace { void calcOpticalFlowBM(const cv::Mat& prev, const cv::Mat& curr, cv::Size bSize, cv::Size shiftSize, cv::Size maxRange, int usePrevious, cv::Mat& velx, cv::Mat& vely) { cv::Size sz((curr.cols - bSize.width + shiftSize.width)/shiftSize.width, (curr.rows - bSize.height + shiftSize.height)/shiftSize.height); velx.create(sz, CV_32FC1); vely.create(sz, CV_32FC1); CvMat cvprev = prev; CvMat cvcurr = curr; CvMat cvvelx = velx; CvMat cvvely = vely; cvCalcOpticalFlowBM(&cvprev, &cvcurr, bSize, shiftSize, maxRange, usePrevious, &cvvelx, &cvvely); } } struct OpticalFlowBM : testing::TestWithParam { }; GPU_TEST_P(OpticalFlowBM, Accuracy) { cv::gpu::DeviceInfo devInfo = GetParam(); cv::gpu::setDevice(devInfo.deviceID()); cv::Mat frame0 = readImage("opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE); ASSERT_FALSE(frame0.empty()); cv::Mat frame1 = readImage("opticalflow/rubberwhale2.png", cv::IMREAD_GRAYSCALE); ASSERT_FALSE(frame1.empty()); cv::Size block_size(16, 16); cv::Size shift_size(1, 1); cv::Size max_range(16, 16); cv::gpu::GpuMat d_velx, d_vely, buf; cv::gpu::calcOpticalFlowBM(loadMat(frame0), loadMat(frame1), block_size, shift_size, max_range, false, d_velx, d_vely, buf); cv::Mat velx, vely; calcOpticalFlowBM(frame0, frame1, block_size, shift_size, max_range, false, velx, vely); EXPECT_MAT_NEAR(velx, d_velx, 0); EXPECT_MAT_NEAR(vely, d_vely, 0); } INSTANTIATE_TEST_CASE_P(GPU_Video, OpticalFlowBM, ALL_DEVICES); ////////////////////////////////////////////////////// // FastOpticalFlowBM namespace { void FastOpticalFlowBM_gold(const cv::Mat_& I0, const cv::Mat_& I1, cv::Mat_& velx, cv::Mat_& vely, int search_window, int block_window) { velx.create(I0.size()); vely.create(I0.size()); int search_radius = search_window / 2; int block_radius = block_window / 2; for (int y = 0; y < I0.rows; ++y) { for (int x = 0; x < I0.cols; ++x) { int bestDist = std::numeric_limits::max(); int bestDx = 0; int bestDy = 0; for (int dy = -search_radius; dy <= search_radius; ++dy) { for (int dx = -search_radius; dx <= search_radius; ++dx) { int dist = 0; for (int by = -block_radius; by <= block_radius; ++by) { for (int bx = -block_radius; bx <= block_radius; ++bx) { int I0_val = I0(cv::borderInterpolate(y + by, I0.rows, cv::BORDER_DEFAULT), cv::borderInterpolate(x + bx, I0.cols, cv::BORDER_DEFAULT)); int I1_val = I1(cv::borderInterpolate(y + dy + by, I0.rows, cv::BORDER_DEFAULT), cv::borderInterpolate(x + dx + bx, I0.cols, cv::BORDER_DEFAULT)); dist += std::abs(I0_val - I1_val); } } if (dist < bestDist) { bestDist = dist; bestDx = dx; bestDy = dy; } } } velx(y, x) = (float) bestDx; vely(y, x) = (float) bestDy; } } } double calc_rmse(const cv::Mat_& flow1, const cv::Mat_& flow2) { double sum = 0.0; for (int y = 0; y < flow1.rows; ++y) { for (int x = 0; x < flow1.cols; ++x) { double diff = flow1(y, x) - flow2(y, x); sum += diff * diff; } } return std::sqrt(sum / flow1.size().area()); } } struct FastOpticalFlowBM : testing::TestWithParam { }; GPU_TEST_P(FastOpticalFlowBM, Accuracy) { const double MAX_RMSE = 0.6; int search_window = 15; int block_window = 5; cv::gpu::DeviceInfo devInfo = GetParam(); cv::gpu::setDevice(devInfo.deviceID()); cv::Mat frame0 = readImage("opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE); ASSERT_FALSE(frame0.empty()); cv::Mat frame1 = readImage("opticalflow/rubberwhale2.png", cv::IMREAD_GRAYSCALE); ASSERT_FALSE(frame1.empty()); cv::Size smallSize(320, 240); cv::Mat frame0_small; cv::Mat frame1_small; cv::resize(frame0, frame0_small, smallSize); cv::resize(frame1, frame1_small, smallSize); cv::gpu::GpuMat d_flowx; cv::gpu::GpuMat d_flowy; cv::gpu::FastOpticalFlowBM fastBM; fastBM(loadMat(frame0_small), loadMat(frame1_small), d_flowx, d_flowy, search_window, block_window); cv::Mat_ flowx; cv::Mat_ flowy; FastOpticalFlowBM_gold(frame0_small, frame1_small, flowx, flowy, search_window, block_window); double err; err = calc_rmse(flowx, cv::Mat(d_flowx)); EXPECT_LE(err, MAX_RMSE); err = calc_rmse(flowy, cv::Mat(d_flowy)); EXPECT_LE(err, MAX_RMSE); } INSTANTIATE_TEST_CASE_P(GPU_Video, FastOpticalFlowBM, ALL_DEVICES); #endif // HAVE_CUDA