/*M /////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Copyright (C) 2017, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "../precomp.hpp" #include "../op_inf_engine.hpp" #include #include #ifdef HAVE_OPENCL #include "opencl_kernels_dnn.hpp" #endif namespace cv { namespace dnn { class ReorgLayerImpl CV_FINAL : public ReorgLayer { int reorgStride; public: ReorgLayerImpl(const LayerParams& params) { setParamsFrom(params); reorgStride = params.get("reorg_stride", 2); CV_Assert(reorgStride > 0); } bool getMemoryShapes(const std::vector &inputs, const int requiredOutputs, std::vector &outputs, std::vector &internals) const CV_OVERRIDE { CV_Assert(inputs.size() > 0); outputs = std::vector(inputs.size(), shape( inputs[0][0], inputs[0][1] * reorgStride * reorgStride, inputs[0][2] / reorgStride, inputs[0][3] / reorgStride)); CV_Assert(outputs[0][0] > 0 && outputs[0][1] > 0 && outputs[0][2] > 0 && outputs[0][3] > 0); CV_Assert(total(outputs[0]) == total(inputs[0])); return false; } virtual void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) CV_OVERRIDE { std::vector inputs, outputs; inputs_arr.getMatVector(inputs); outputs_arr.getMatVector(outputs); Mat inp = inputs[0]; Mat out = outputs[0]; int batchSize = inp.size[0]; LayerParams permParams; if (batchSize == 1) { int order[] = {1, 3, 0, 2}; permParams.set("order", DictValue::arrayInt(&order[0], 4)); permuteInpShape.resize(4); permuteInpShape[0] = inp.size[1] * inp.size[2] / (reorgStride * reorgStride); // (channels*height)/(r*r) permuteInpShape[1] = reorgStride; permuteInpShape[2] = inp.size[3]; // width permuteInpShape[3] = reorgStride; permuteOutShape.resize(4); for (int i = 0; i < 4; ++i) permuteOutShape[i] = permuteInpShape[order[i]]; } else { int order[] = {0, 2, 4, 1, 3}; permParams.set("order", DictValue::arrayInt(&order[0], 5)); permuteInpShape.resize(5); permuteInpShape[0] = batchSize; permuteInpShape[1] = inp.size[1] * inp.size[2] / (reorgStride * reorgStride); // (channels*height)/(r*r) permuteInpShape[2] = reorgStride; permuteInpShape[3] = inp.size[3]; // width permuteInpShape[4] = reorgStride; permuteOutShape.resize(5); for (int i = 0; i < 5; ++i) permuteOutShape[i] = permuteInpShape[order[i]]; } permute = PermuteLayer::create(permParams); std::vector permuteInputs(1, inp.reshape(1, permuteInpShape)); std::vector permuteOutputs(1, out.reshape(1, permuteOutShape)); permute->finalize(permuteInputs, permuteOutputs); } virtual bool supportBackend(int backendId) CV_OVERRIDE { return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_INFERENCE_ENGINE; } #ifdef HAVE_OPENCL bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals) { std::vector inputs; std::vector outputs; inps.getUMatVector(inputs); outs.getUMatVector(outputs); inputs[0] = inputs[0].reshape(1, permuteInpShape.size(), &permuteInpShape[0]); outputs[0] = outputs[0].reshape(1, permuteOutShape.size(), &permuteOutShape[0]); permute->preferableTarget = preferableTarget; permute->forward(inputs, outputs, internals); return true; } #endif void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE { CV_TRACE_FUNCTION(); CV_TRACE_ARG_VALUE(name, "name", name.c_str()); CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget) && OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()), forward_ocl(inputs_arr, outputs_arr, internals_arr)) if (inputs_arr.depth() == CV_16S) { forward_fallback(inputs_arr, outputs_arr, internals_arr); return; } std::vector inputs, outputs; inputs_arr.getMatVector(inputs); outputs_arr.getMatVector(outputs); inputs[0] = inputs[0].reshape(1, permuteInpShape); outputs[0] = outputs[0].reshape(1, permuteOutShape); permute->forward(inputs, outputs, internals_arr); } virtual Ptr initInfEngine(const std::vector >&) CV_OVERRIDE { #ifdef HAVE_INF_ENGINE InferenceEngine::LayerParams lp; lp.name = name; lp.type = "ReorgYolo"; lp.precision = InferenceEngine::Precision::FP32; std::shared_ptr ieLayer(new InferenceEngine::CNNLayer(lp)); ieLayer->params["stride"] = format("%d", reorgStride); return Ptr(new InfEngineBackendNode(ieLayer)); #endif // HAVE_INF_ENGINE return Ptr(); } virtual int64 getFLOPS(const std::vector &inputs, const std::vector &outputs) const CV_OVERRIDE { CV_UNUSED(outputs); // suppress unused variable warning int64 flops = 0; for(int i = 0; i < inputs.size(); i++) { flops += 21*total(inputs[i]); } return flops; } private: Ptr permute; std::vector permuteInpShape, permuteOutShape; }; Ptr ReorgLayer::create(const LayerParams& params) { return Ptr(new ReorgLayerImpl(params)); } } // namespace dnn } // namespace cv