/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved. // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // @Authors // Wu Xinglong, wxl370@126.com // Sen Liu, swjtuls1987@126.com // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other oclMaterials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors as is and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ // Enter your kernel in this window //#pragma OPENCL EXTENSION cl_amd_printf:enable #define CV_HAAR_FEATURE_MAX 3 typedef int sumtype; typedef float sqsumtype; typedef struct __attribute__((aligned(128))) GpuHidHaarFeature { struct __attribute__((aligned(32))) { int p0 __attribute__((aligned(4))); int p1 __attribute__((aligned(4))); int p2 __attribute__((aligned(4))); int p3 __attribute__((aligned(4))); float weight __attribute__((aligned(4))); } rect[CV_HAAR_FEATURE_MAX] __attribute__((aligned(32))); } GpuHidHaarFeature; typedef struct __attribute__((aligned(128))) GpuHidHaarTreeNode { int p[CV_HAAR_FEATURE_MAX][4] __attribute__((aligned(64))); float weight[CV_HAAR_FEATURE_MAX] /*__attribute__((aligned (16)))*/; float threshold /*__attribute__((aligned (4)))*/; float alpha[2] __attribute__((aligned(8))); int left __attribute__((aligned(4))); int right __attribute__((aligned(4))); } GpuHidHaarTreeNode; typedef struct __attribute__((aligned(32))) GpuHidHaarClassifier { int count __attribute__((aligned(4))); GpuHidHaarTreeNode *node __attribute__((aligned(8))); float *alpha __attribute__((aligned(8))); } GpuHidHaarClassifier; typedef struct __attribute__((aligned(64))) GpuHidHaarStageClassifier { int count __attribute__((aligned(4))); float threshold __attribute__((aligned(4))); int two_rects __attribute__((aligned(4))); int reserved0 __attribute__((aligned(8))); int reserved1 __attribute__((aligned(8))); int reserved2 __attribute__((aligned(8))); int reserved3 __attribute__((aligned(8))); } GpuHidHaarStageClassifier; typedef struct __attribute__((aligned(64))) GpuHidHaarClassifierCascade { int count __attribute__((aligned(4))); int is_stump_based __attribute__((aligned(4))); int has_tilted_features __attribute__((aligned(4))); int is_tree __attribute__((aligned(4))); int pq0 __attribute__((aligned(4))); int pq1 __attribute__((aligned(4))); int pq2 __attribute__((aligned(4))); int pq3 __attribute__((aligned(4))); int p0 __attribute__((aligned(4))); int p1 __attribute__((aligned(4))); int p2 __attribute__((aligned(4))); int p3 __attribute__((aligned(4))); float inv_window_area __attribute__((aligned(4))); } GpuHidHaarClassifierCascade; __kernel void gpuRunHaarClassifierCascade_scaled2( global GpuHidHaarStageClassifier *stagecascadeptr, global int4 *info, global GpuHidHaarTreeNode *nodeptr, global const int *restrict sum, global const float *restrict sqsum, global int4 *candidate, const int rows, const int cols, const int step, const int loopcount, const int start_stage, const int split_stage, const int end_stage, const int startnode, global int4 *p, global float *correction, const int nodecount) { int grpszx = get_local_size(0); int grpszy = get_local_size(1); int grpnumx = get_num_groups(0); int grpidx = get_group_id(0); int lclidx = get_local_id(0); int lclidy = get_local_id(1); int lcl_sz = mul24(grpszx, grpszy); int lcl_id = mad24(lclidy, grpszx, lclidx); __local int glboutindex[1]; __local int lclcount[1]; __local int lcloutindex[64]; glboutindex[0] = 0; int outputoff = mul24(grpidx, 256); candidate[outputoff + (lcl_id << 2)] = (int4)0; candidate[outputoff + (lcl_id << 2) + 1] = (int4)0; candidate[outputoff + (lcl_id << 2) + 2] = (int4)0; candidate[outputoff + (lcl_id << 2) + 3] = (int4)0; int max_idx = rows * cols - 1; for (int scalei = 0; scalei < loopcount; scalei++) { int4 scaleinfo1; scaleinfo1 = info[scalei]; int width = (scaleinfo1.x & 0xffff0000) >> 16; int height = scaleinfo1.x & 0xffff; int grpnumperline = (scaleinfo1.y & 0xffff0000) >> 16; int totalgrp = scaleinfo1.y & 0xffff; float factor = as_float(scaleinfo1.w); float correction_t = correction[scalei]; int ystep = (int)(max(2.0f, factor) + 0.5f); for (int grploop = get_group_id(0); grploop < totalgrp; grploop += grpnumx) { int4 cascadeinfo = p[scalei]; int grpidy = grploop / grpnumperline; int grpidx = grploop - mul24(grpidy, grpnumperline); int ix = mad24(grpidx, grpszx, lclidx); int iy = mad24(grpidy, grpszy, lclidy); int x = ix * ystep; int y = iy * ystep; lcloutindex[lcl_id] = 0; lclcount[0] = 0; int nodecounter; float mean, variance_norm_factor; //if((ix < width) && (iy < height)) { const int p_offset = mad24(y, step, x); cascadeinfo.x += p_offset; cascadeinfo.z += p_offset; mean = (sum[clamp(mad24(cascadeinfo.y, step, cascadeinfo.x), 0, max_idx)] - sum[clamp(mad24(cascadeinfo.y, step, cascadeinfo.z), 0, max_idx)] - sum[clamp(mad24(cascadeinfo.w, step, cascadeinfo.x), 0, max_idx)] + sum[clamp(mad24(cascadeinfo.w, step, cascadeinfo.z), 0, max_idx)]) * correction_t; variance_norm_factor = sqsum[clamp(mad24(cascadeinfo.y, step, cascadeinfo.x), 0, max_idx)] - sqsum[clamp(mad24(cascadeinfo.y, step, cascadeinfo.z), 0, max_idx)] - sqsum[clamp(mad24(cascadeinfo.w, step, cascadeinfo.x), 0, max_idx)] + sqsum[clamp(mad24(cascadeinfo.w, step, cascadeinfo.z), 0, max_idx)]; variance_norm_factor = variance_norm_factor * correction_t - mean * mean; variance_norm_factor = variance_norm_factor >= 0.f ? sqrt(variance_norm_factor) : 1.f; bool result = true; nodecounter = startnode + nodecount * scalei; for (int stageloop = start_stage; (stageloop < end_stage) && result; stageloop++) { float stage_sum = 0.f; int stagecount = stagecascadeptr[stageloop].count; for (int nodeloop = 0; nodeloop < stagecount; nodeloop++) { __global GpuHidHaarTreeNode *currentnodeptr = (nodeptr + nodecounter); int4 info1 = *(__global int4 *)(&(currentnodeptr->p[0][0])); int4 info2 = *(__global int4 *)(&(currentnodeptr->p[1][0])); int4 info3 = *(__global int4 *)(&(currentnodeptr->p[2][0])); float4 w = *(__global float4 *)(&(currentnodeptr->weight[0])); float2 alpha2 = *(__global float2 *)(&(currentnodeptr->alpha[0])); float nodethreshold = w.w * variance_norm_factor; info1.x += p_offset; info1.z += p_offset; info2.x += p_offset; info2.z += p_offset; float classsum = (sum[clamp(mad24(info1.y, step, info1.x), 0, max_idx)] - sum[clamp(mad24(info1.y, step, info1.z), 0, max_idx)] - sum[clamp(mad24(info1.w, step, info1.x), 0, max_idx)] + sum[clamp(mad24(info1.w, step, info1.z), 0, max_idx)]) * w.x; classsum += (sum[clamp(mad24(info2.y, step, info2.x), 0, max_idx)] - sum[clamp(mad24(info2.y, step, info2.z), 0, max_idx)] - sum[clamp(mad24(info2.w, step, info2.x), 0, max_idx)] + sum[clamp(mad24(info2.w, step, info2.z), 0, max_idx)]) * w.y; info3.x += p_offset; info3.z += p_offset; classsum += (sum[clamp(mad24(info3.y, step, info3.x), 0, max_idx)] - sum[clamp(mad24(info3.y, step, info3.z), 0, max_idx)] - sum[clamp(mad24(info3.w, step, info3.x), 0, max_idx)] + sum[clamp(mad24(info3.w, step, info3.z), 0, max_idx)]) * w.z; stage_sum += classsum >= nodethreshold ? alpha2.y : alpha2.x; nodecounter++; } result = (bool)(stage_sum >= stagecascadeptr[stageloop].threshold); } barrier(CLK_LOCAL_MEM_FENCE); if (result && (ix < width) && (iy < height)) { int queueindex = atomic_inc(lclcount); lcloutindex[queueindex] = (y << 16) | x; } barrier(CLK_LOCAL_MEM_FENCE); int queuecount = lclcount[0]; if (lcl_id < queuecount) { int temp = lcloutindex[lcl_id]; int x = temp & 0xffff; int y = (temp & (int)0xffff0000) >> 16; temp = atomic_inc(glboutindex); int4 candidate_result; candidate_result.zw = (int2)convert_int_rtn(factor * 20.f); candidate_result.x = x; candidate_result.y = y; candidate[outputoff + temp + lcl_id] = candidate_result; } barrier(CLK_LOCAL_MEM_FENCE); } } } } __kernel void gpuscaleclassifier(global GpuHidHaarTreeNode *orinode, global GpuHidHaarTreeNode *newnode, float scale, float weight_scale, int nodenum) { int counter = get_global_id(0); int tr_x[3], tr_y[3], tr_h[3], tr_w[3], i = 0; GpuHidHaarTreeNode t1 = *(orinode + counter); #pragma unroll for (i = 0; i < 3; i++) { tr_x[i] = (int)(t1.p[i][0] * scale + 0.5f); tr_y[i] = (int)(t1.p[i][1] * scale + 0.5f); tr_w[i] = (int)(t1.p[i][2] * scale + 0.5f); tr_h[i] = (int)(t1.p[i][3] * scale + 0.5f); } t1.weight[0] = t1.p[2][0] ? -(t1.weight[1] * tr_h[1] * tr_w[1] + t1.weight[2] * tr_h[2] * tr_w[2]) / (tr_h[0] * tr_w[0]) : -t1.weight[1] * tr_h[1] * tr_w[1] / (tr_h[0] * tr_w[0]); counter += nodenum; #pragma unroll for (i = 0; i < 3; i++) { newnode[counter].p[i][0] = tr_x[i]; newnode[counter].p[i][1] = tr_y[i]; newnode[counter].p[i][2] = tr_x[i] + tr_w[i]; newnode[counter].p[i][3] = tr_y[i] + tr_h[i]; newnode[counter].weight[i] = t1.weight[i] * weight_scale; } newnode[counter].left = t1.left; newnode[counter].right = t1.right; newnode[counter].threshold = t1.threshold; newnode[counter].alpha[0] = t1.alpha[0]; newnode[counter].alpha[1] = t1.alpha[1]; }