/* dtrmv.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "clapack.h" /* Subroutine */ int dtrmv_(char *uplo, char *trans, char *diag, integer *n, doublereal *a, integer *lda, doublereal *x, integer *incx) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2; /* Local variables */ integer i__, j, ix, jx, kx, info; doublereal temp; extern logical lsame_(char *, char *); extern /* Subroutine */ int xerbla_(char *, integer *); logical nounit; /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DTRMV performs one of the matrix-vector operations */ /* x := A*x, or x := A'*x, */ /* where x is an n element vector and A is an n by n unit, or non-unit, */ /* upper or lower triangular matrix. */ /* Arguments */ /* ========== */ /* UPLO - CHARACTER*1. */ /* On entry, UPLO specifies whether the matrix is an upper or */ /* lower triangular matrix as follows: */ /* UPLO = 'U' or 'u' A is an upper triangular matrix. */ /* UPLO = 'L' or 'l' A is a lower triangular matrix. */ /* Unchanged on exit. */ /* TRANS - CHARACTER*1. */ /* On entry, TRANS specifies the operation to be performed as */ /* follows: */ /* TRANS = 'N' or 'n' x := A*x. */ /* TRANS = 'T' or 't' x := A'*x. */ /* TRANS = 'C' or 'c' x := A'*x. */ /* Unchanged on exit. */ /* DIAG - CHARACTER*1. */ /* On entry, DIAG specifies whether or not A is unit */ /* triangular as follows: */ /* DIAG = 'U' or 'u' A is assumed to be unit triangular. */ /* DIAG = 'N' or 'n' A is not assumed to be unit */ /* triangular. */ /* Unchanged on exit. */ /* N - INTEGER. */ /* On entry, N specifies the order of the matrix A. */ /* N must be at least zero. */ /* Unchanged on exit. */ /* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). */ /* Before entry with UPLO = 'U' or 'u', the leading n by n */ /* upper triangular part of the array A must contain the upper */ /* triangular matrix and the strictly lower triangular part of */ /* A is not referenced. */ /* Before entry with UPLO = 'L' or 'l', the leading n by n */ /* lower triangular part of the array A must contain the lower */ /* triangular matrix and the strictly upper triangular part of */ /* A is not referenced. */ /* Note that when DIAG = 'U' or 'u', the diagonal elements of */ /* A are not referenced either, but are assumed to be unity. */ /* Unchanged on exit. */ /* LDA - INTEGER. */ /* On entry, LDA specifies the first dimension of A as declared */ /* in the calling (sub) program. LDA must be at least */ /* max( 1, n ). */ /* Unchanged on exit. */ /* X - DOUBLE PRECISION array of dimension at least */ /* ( 1 + ( n - 1 )*abs( INCX ) ). */ /* Before entry, the incremented array X must contain the n */ /* element vector x. On exit, X is overwritten with the */ /* tranformed vector x. */ /* INCX - INTEGER. */ /* On entry, INCX specifies the increment for the elements of */ /* X. INCX must not be zero. */ /* Unchanged on exit. */ /* Level 2 Blas routine. */ /* -- Written on 22-October-1986. */ /* Jack Dongarra, Argonne National Lab. */ /* Jeremy Du Croz, Nag Central Office. */ /* Sven Hammarling, Nag Central Office. */ /* Richard Hanson, Sandia National Labs. */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --x; /* Function Body */ info = 0; if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) { info = 1; } else if (! lsame_(trans, "N") && ! lsame_(trans, "T") && ! lsame_(trans, "C")) { info = 2; } else if (! lsame_(diag, "U") && ! lsame_(diag, "N")) { info = 3; } else if (*n < 0) { info = 4; } else if (*lda < max(1,*n)) { info = 6; } else if (*incx == 0) { info = 8; } if (info != 0) { xerbla_("DTRMV ", &info); return 0; } /* Quick return if possible. */ if (*n == 0) { return 0; } nounit = lsame_(diag, "N"); /* Set up the start point in X if the increment is not unity. This */ /* will be ( N - 1 )*INCX too small for descending loops. */ if (*incx <= 0) { kx = 1 - (*n - 1) * *incx; } else if (*incx != 1) { kx = 1; } /* Start the operations. In this version the elements of A are */ /* accessed sequentially with one pass through A. */ if (lsame_(trans, "N")) { /* Form x := A*x. */ if (lsame_(uplo, "U")) { if (*incx == 1) { i__1 = *n; for (j = 1; j <= i__1; ++j) { if (x[j] != 0.) { temp = x[j]; i__2 = j - 1; for (i__ = 1; i__ <= i__2; ++i__) { x[i__] += temp * a[i__ + j * a_dim1]; /* L10: */ } if (nounit) { x[j] *= a[j + j * a_dim1]; } } /* L20: */ } } else { jx = kx; i__1 = *n; for (j = 1; j <= i__1; ++j) { if (x[jx] != 0.) { temp = x[jx]; ix = kx; i__2 = j - 1; for (i__ = 1; i__ <= i__2; ++i__) { x[ix] += temp * a[i__ + j * a_dim1]; ix += *incx; /* L30: */ } if (nounit) { x[jx] *= a[j + j * a_dim1]; } } jx += *incx; /* L40: */ } } } else { if (*incx == 1) { for (j = *n; j >= 1; --j) { if (x[j] != 0.) { temp = x[j]; i__1 = j + 1; for (i__ = *n; i__ >= i__1; --i__) { x[i__] += temp * a[i__ + j * a_dim1]; /* L50: */ } if (nounit) { x[j] *= a[j + j * a_dim1]; } } /* L60: */ } } else { kx += (*n - 1) * *incx; jx = kx; for (j = *n; j >= 1; --j) { if (x[jx] != 0.) { temp = x[jx]; ix = kx; i__1 = j + 1; for (i__ = *n; i__ >= i__1; --i__) { x[ix] += temp * a[i__ + j * a_dim1]; ix -= *incx; /* L70: */ } if (nounit) { x[jx] *= a[j + j * a_dim1]; } } jx -= *incx; /* L80: */ } } } } else { /* Form x := A'*x. */ if (lsame_(uplo, "U")) { if (*incx == 1) { for (j = *n; j >= 1; --j) { temp = x[j]; if (nounit) { temp *= a[j + j * a_dim1]; } for (i__ = j - 1; i__ >= 1; --i__) { temp += a[i__ + j * a_dim1] * x[i__]; /* L90: */ } x[j] = temp; /* L100: */ } } else { jx = kx + (*n - 1) * *incx; for (j = *n; j >= 1; --j) { temp = x[jx]; ix = jx; if (nounit) { temp *= a[j + j * a_dim1]; } for (i__ = j - 1; i__ >= 1; --i__) { ix -= *incx; temp += a[i__ + j * a_dim1] * x[ix]; /* L110: */ } x[jx] = temp; jx -= *incx; /* L120: */ } } } else { if (*incx == 1) { i__1 = *n; for (j = 1; j <= i__1; ++j) { temp = x[j]; if (nounit) { temp *= a[j + j * a_dim1]; } i__2 = *n; for (i__ = j + 1; i__ <= i__2; ++i__) { temp += a[i__ + j * a_dim1] * x[i__]; /* L130: */ } x[j] = temp; /* L140: */ } } else { jx = kx; i__1 = *n; for (j = 1; j <= i__1; ++j) { temp = x[jx]; ix = jx; if (nounit) { temp *= a[j + j * a_dim1]; } i__2 = *n; for (i__ = j + 1; i__ <= i__2; ++i__) { ix += *incx; temp += a[i__ + j * a_dim1] * x[ix]; /* L150: */ } x[jx] = temp; jx += *incx; /* L160: */ } } } } return 0; /* End of DTRMV . */ } /* dtrmv_ */