/* slarre.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "clapack.h" /* Table of constant values */ static integer c__1 = 1; static integer c__2 = 2; /* Subroutine */ int slarre_(char *range, integer *n, real *vl, real *vu, integer *il, integer *iu, real *d__, real *e, real *e2, real *rtol1, real *rtol2, real *spltol, integer *nsplit, integer *isplit, integer * m, real *w, real *werr, real *wgap, integer *iblock, integer *indexw, real *gers, real *pivmin, real *work, integer *iwork, integer *info) { /* System generated locals */ integer i__1, i__2; real r__1, r__2, r__3; /* Builtin functions */ double sqrt(doublereal), log(doublereal); /* Local variables */ integer i__, j; real s1, s2; integer mb; real gl; integer in, mm; real gu; integer cnt; real eps, tau, tmp, rtl; integer cnt1, cnt2; real tmp1, eabs; integer iend, jblk; real eold; integer indl; real dmax__, emax; integer wend, idum, indu; real rtol; integer iseed[4]; real avgap, sigma; extern logical lsame_(char *, char *); integer iinfo; logical norep; extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, integer *), slasq2_(integer *, real *, integer *); integer ibegin; logical forceb; integer irange; real sgndef; extern doublereal slamch_(char *); integer wbegin; real safmin, spdiam; extern /* Subroutine */ int slarra_(integer *, real *, real *, real *, real *, real *, integer *, integer *, integer *); logical usedqd; real clwdth, isleft; extern /* Subroutine */ int slarrb_(integer *, real *, real *, integer *, integer *, real *, real *, integer *, real *, real *, real *, real *, integer *, real *, real *, integer *, integer *), slarrc_( char *, integer *, real *, real *, real *, real *, real *, integer *, integer *, integer *, integer *), slarrd_(char *, char *, integer *, real *, real *, integer *, integer *, real * , real *, real *, real *, real *, real *, integer *, integer *, integer *, real *, real *, real *, real *, integer *, integer *, real *, integer *, integer *), slarrk_(integer *, integer *, real *, real *, real *, real *, real *, real *, real *, real *, integer *); real isrght, bsrtol, dpivot; extern /* Subroutine */ int slarnv_(integer *, integer *, integer *, real *); /* -- LAPACK auxiliary routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* To find the desired eigenvalues of a given real symmetric */ /* tridiagonal matrix T, SLARRE sets any "small" off-diagonal */ /* elements to zero, and for each unreduced block T_i, it finds */ /* (a) a suitable shift at one end of the block's spectrum, */ /* (b) the base representation, T_i - sigma_i I = L_i D_i L_i^T, and */ /* (c) eigenvalues of each L_i D_i L_i^T. */ /* The representations and eigenvalues found are then used by */ /* SSTEMR to compute the eigenvectors of T. */ /* The accuracy varies depending on whether bisection is used to */ /* find a few eigenvalues or the dqds algorithm (subroutine SLASQ2) to */ /* conpute all and then discard any unwanted one. */ /* As an added benefit, SLARRE also outputs the n */ /* Gerschgorin intervals for the matrices L_i D_i L_i^T. */ /* Arguments */ /* ========= */ /* RANGE (input) CHARACTER */ /* = 'A': ("All") all eigenvalues will be found. */ /* = 'V': ("Value") all eigenvalues in the half-open interval */ /* (VL, VU] will be found. */ /* = 'I': ("Index") the IL-th through IU-th eigenvalues (of the */ /* entire matrix) will be found. */ /* N (input) INTEGER */ /* The order of the matrix. N > 0. */ /* VL (input/output) REAL */ /* VU (input/output) REAL */ /* If RANGE='V', the lower and upper bounds for the eigenvalues. */ /* Eigenvalues less than or equal to VL, or greater than VU, */ /* will not be returned. VL < VU. */ /* If RANGE='I' or ='A', SLARRE computes bounds on the desired */ /* part of the spectrum. */ /* IL (input) INTEGER */ /* IU (input) INTEGER */ /* If RANGE='I', the indices (in ascending order) of the */ /* smallest and largest eigenvalues to be returned. */ /* 1 <= IL <= IU <= N. */ /* D (input/output) REAL array, dimension (N) */ /* On entry, the N diagonal elements of the tridiagonal */ /* matrix T. */ /* On exit, the N diagonal elements of the diagonal */ /* matrices D_i. */ /* E (input/output) REAL array, dimension (N) */ /* On entry, the first (N-1) entries contain the subdiagonal */ /* elements of the tridiagonal matrix T; E(N) need not be set. */ /* On exit, E contains the subdiagonal elements of the unit */ /* bidiagonal matrices L_i. The entries E( ISPLIT( I ) ), */ /* 1 <= I <= NSPLIT, contain the base points sigma_i on output. */ /* E2 (input/output) REAL array, dimension (N) */ /* On entry, the first (N-1) entries contain the SQUARES of the */ /* subdiagonal elements of the tridiagonal matrix T; */ /* E2(N) need not be set. */ /* On exit, the entries E2( ISPLIT( I ) ), */ /* 1 <= I <= NSPLIT, have been set to zero */ /* RTOL1 (input) REAL */ /* RTOL2 (input) REAL */ /* Parameters for bisection. */ /* An interval [LEFT,RIGHT] has converged if */ /* RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) ) */ /* SPLTOL (input) REAL */ /* The threshold for splitting. */ /* NSPLIT (output) INTEGER */ /* The number of blocks T splits into. 1 <= NSPLIT <= N. */ /* ISPLIT (output) INTEGER array, dimension (N) */ /* The splitting points, at which T breaks up into blocks. */ /* The first block consists of rows/columns 1 to ISPLIT(1), */ /* the second of rows/columns ISPLIT(1)+1 through ISPLIT(2), */ /* etc., and the NSPLIT-th consists of rows/columns */ /* ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N. */ /* M (output) INTEGER */ /* The total number of eigenvalues (of all L_i D_i L_i^T) */ /* found. */ /* W (output) REAL array, dimension (N) */ /* The first M elements contain the eigenvalues. The */ /* eigenvalues of each of the blocks, L_i D_i L_i^T, are */ /* sorted in ascending order ( SLARRE may use the */ /* remaining N-M elements as workspace). */ /* WERR (output) REAL array, dimension (N) */ /* The error bound on the corresponding eigenvalue in W. */ /* WGAP (output) REAL array, dimension (N) */ /* The separation from the right neighbor eigenvalue in W. */ /* The gap is only with respect to the eigenvalues of the same block */ /* as each block has its own representation tree. */ /* Exception: at the right end of a block we store the left gap */ /* IBLOCK (output) INTEGER array, dimension (N) */ /* The indices of the blocks (submatrices) associated with the */ /* corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue */ /* W(i) belongs to the first block from the top, =2 if W(i) */ /* belongs to the second block, etc. */ /* INDEXW (output) INTEGER array, dimension (N) */ /* The indices of the eigenvalues within each block (submatrix); */ /* for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the */ /* i-th eigenvalue W(i) is the 10-th eigenvalue in block 2 */ /* GERS (output) REAL array, dimension (2*N) */ /* The N Gerschgorin intervals (the i-th Gerschgorin interval */ /* is (GERS(2*i-1), GERS(2*i)). */ /* PIVMIN (output) DOUBLE PRECISION */ /* The minimum pivot in the Sturm sequence for T. */ /* WORK (workspace) REAL array, dimension (6*N) */ /* Workspace. */ /* IWORK (workspace) INTEGER array, dimension (5*N) */ /* Workspace. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* > 0: A problem occured in SLARRE. */ /* < 0: One of the called subroutines signaled an internal problem. */ /* Needs inspection of the corresponding parameter IINFO */ /* for further information. */ /* =-1: Problem in SLARRD. */ /* = 2: No base representation could be found in MAXTRY iterations. */ /* Increasing MAXTRY and recompilation might be a remedy. */ /* =-3: Problem in SLARRB when computing the refined root */ /* representation for SLASQ2. */ /* =-4: Problem in SLARRB when preforming bisection on the */ /* desired part of the spectrum. */ /* =-5: Problem in SLASQ2. */ /* =-6: Problem in SLASQ2. */ /* Further Details */ /* The base representations are required to suffer very little */ /* element growth and consequently define all their eigenvalues to */ /* high relative accuracy. */ /* =============== */ /* Based on contributions by */ /* Beresford Parlett, University of California, Berkeley, USA */ /* Jim Demmel, University of California, Berkeley, USA */ /* Inderjit Dhillon, University of Texas, Austin, USA */ /* Osni Marques, LBNL/NERSC, USA */ /* Christof Voemel, University of California, Berkeley, USA */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ --iwork; --work; --gers; --indexw; --iblock; --wgap; --werr; --w; --isplit; --e2; --e; --d__; /* Function Body */ *info = 0; /* Decode RANGE */ if (lsame_(range, "A")) { irange = 1; } else if (lsame_(range, "V")) { irange = 3; } else if (lsame_(range, "I")) { irange = 2; } *m = 0; /* Get machine constants */ safmin = slamch_("S"); eps = slamch_("P"); /* Set parameters */ rtl = eps * 100.f; /* If one were ever to ask for less initial precision in BSRTOL, */ /* one should keep in mind that for the subset case, the extremal */ /* eigenvalues must be at least as accurate as the current setting */ /* (eigenvalues in the middle need not as much accuracy) */ bsrtol = sqrt(eps) * 5e-4f; /* Treat case of 1x1 matrix for quick return */ if (*n == 1) { if (irange == 1 || irange == 3 && d__[1] > *vl && d__[1] <= *vu || irange == 2 && *il == 1 && *iu == 1) { *m = 1; w[1] = d__[1]; /* The computation error of the eigenvalue is zero */ werr[1] = 0.f; wgap[1] = 0.f; iblock[1] = 1; indexw[1] = 1; gers[1] = d__[1]; gers[2] = d__[1]; } /* store the shift for the initial RRR, which is zero in this case */ e[1] = 0.f; return 0; } /* General case: tridiagonal matrix of order > 1 */ /* Init WERR, WGAP. Compute Gerschgorin intervals and spectral diameter. */ /* Compute maximum off-diagonal entry and pivmin. */ gl = d__[1]; gu = d__[1]; eold = 0.f; emax = 0.f; e[*n] = 0.f; i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { werr[i__] = 0.f; wgap[i__] = 0.f; eabs = (r__1 = e[i__], dabs(r__1)); if (eabs >= emax) { emax = eabs; } tmp1 = eabs + eold; gers[(i__ << 1) - 1] = d__[i__] - tmp1; /* Computing MIN */ r__1 = gl, r__2 = gers[(i__ << 1) - 1]; gl = dmin(r__1,r__2); gers[i__ * 2] = d__[i__] + tmp1; /* Computing MAX */ r__1 = gu, r__2 = gers[i__ * 2]; gu = dmax(r__1,r__2); eold = eabs; /* L5: */ } /* The minimum pivot allowed in the Sturm sequence for T */ /* Computing MAX */ /* Computing 2nd power */ r__3 = emax; r__1 = 1.f, r__2 = r__3 * r__3; *pivmin = safmin * dmax(r__1,r__2); /* Compute spectral diameter. The Gerschgorin bounds give an */ /* estimate that is wrong by at most a factor of SQRT(2) */ spdiam = gu - gl; /* Compute splitting points */ slarra_(n, &d__[1], &e[1], &e2[1], spltol, &spdiam, nsplit, &isplit[1], & iinfo); /* Can force use of bisection instead of faster DQDS. */ /* Option left in the code for future multisection work. */ forceb = FALSE_; /* Initialize USEDQD, DQDS should be used for ALLRNG unless someone */ /* explicitly wants bisection. */ usedqd = irange == 1 && ! forceb; if (irange == 1 && ! forceb) { /* Set interval [VL,VU] that contains all eigenvalues */ *vl = gl; *vu = gu; } else { /* We call SLARRD to find crude approximations to the eigenvalues */ /* in the desired range. In case IRANGE = INDRNG, we also obtain the */ /* interval (VL,VU] that contains all the wanted eigenvalues. */ /* An interval [LEFT,RIGHT] has converged if */ /* RIGHT-LEFT.LT.RTOL*MAX(ABS(LEFT),ABS(RIGHT)) */ /* SLARRD needs a WORK of size 4*N, IWORK of size 3*N */ slarrd_(range, "B", n, vl, vu, il, iu, &gers[1], &bsrtol, &d__[1], &e[ 1], &e2[1], pivmin, nsplit, &isplit[1], &mm, &w[1], &werr[1], vl, vu, &iblock[1], &indexw[1], &work[1], &iwork[1], &iinfo); if (iinfo != 0) { *info = -1; return 0; } /* Make sure that the entries M+1 to N in W, WERR, IBLOCK, INDEXW are 0 */ i__1 = *n; for (i__ = mm + 1; i__ <= i__1; ++i__) { w[i__] = 0.f; werr[i__] = 0.f; iblock[i__] = 0; indexw[i__] = 0; /* L14: */ } } /* ** */ /* Loop over unreduced blocks */ ibegin = 1; wbegin = 1; i__1 = *nsplit; for (jblk = 1; jblk <= i__1; ++jblk) { iend = isplit[jblk]; in = iend - ibegin + 1; /* 1 X 1 block */ if (in == 1) { if (irange == 1 || irange == 3 && d__[ibegin] > *vl && d__[ibegin] <= *vu || irange == 2 && iblock[wbegin] == jblk) { ++(*m); w[*m] = d__[ibegin]; werr[*m] = 0.f; /* The gap for a single block doesn't matter for the later */ /* algorithm and is assigned an arbitrary large value */ wgap[*m] = 0.f; iblock[*m] = jblk; indexw[*m] = 1; ++wbegin; } /* E( IEND ) holds the shift for the initial RRR */ e[iend] = 0.f; ibegin = iend + 1; goto L170; } /* Blocks of size larger than 1x1 */ /* E( IEND ) will hold the shift for the initial RRR, for now set it =0 */ e[iend] = 0.f; /* Find local outer bounds GL,GU for the block */ gl = d__[ibegin]; gu = d__[ibegin]; i__2 = iend; for (i__ = ibegin; i__ <= i__2; ++i__) { /* Computing MIN */ r__1 = gers[(i__ << 1) - 1]; gl = dmin(r__1,gl); /* Computing MAX */ r__1 = gers[i__ * 2]; gu = dmax(r__1,gu); /* L15: */ } spdiam = gu - gl; if (! (irange == 1 && ! forceb)) { /* Count the number of eigenvalues in the current block. */ mb = 0; i__2 = mm; for (i__ = wbegin; i__ <= i__2; ++i__) { if (iblock[i__] == jblk) { ++mb; } else { goto L21; } /* L20: */ } L21: if (mb == 0) { /* No eigenvalue in the current block lies in the desired range */ /* E( IEND ) holds the shift for the initial RRR */ e[iend] = 0.f; ibegin = iend + 1; goto L170; } else { /* Decide whether dqds or bisection is more efficient */ usedqd = (real) mb > in * .5f && ! forceb; wend = wbegin + mb - 1; /* Calculate gaps for the current block */ /* In later stages, when representations for individual */ /* eigenvalues are different, we use SIGMA = E( IEND ). */ sigma = 0.f; i__2 = wend - 1; for (i__ = wbegin; i__ <= i__2; ++i__) { /* Computing MAX */ r__1 = 0.f, r__2 = w[i__ + 1] - werr[i__ + 1] - (w[i__] + werr[i__]); wgap[i__] = dmax(r__1,r__2); /* L30: */ } /* Computing MAX */ r__1 = 0.f, r__2 = *vu - sigma - (w[wend] + werr[wend]); wgap[wend] = dmax(r__1,r__2); /* Find local index of the first and last desired evalue. */ indl = indexw[wbegin]; indu = indexw[wend]; } } if (irange == 1 && ! forceb || usedqd) { /* Case of DQDS */ /* Find approximations to the extremal eigenvalues of the block */ slarrk_(&in, &c__1, &gl, &gu, &d__[ibegin], &e2[ibegin], pivmin, & rtl, &tmp, &tmp1, &iinfo); if (iinfo != 0) { *info = -1; return 0; } /* Computing MAX */ r__2 = gl, r__3 = tmp - tmp1 - eps * 100.f * (r__1 = tmp - tmp1, dabs(r__1)); isleft = dmax(r__2,r__3); slarrk_(&in, &in, &gl, &gu, &d__[ibegin], &e2[ibegin], pivmin, & rtl, &tmp, &tmp1, &iinfo); if (iinfo != 0) { *info = -1; return 0; } /* Computing MIN */ r__2 = gu, r__3 = tmp + tmp1 + eps * 100.f * (r__1 = tmp + tmp1, dabs(r__1)); isrght = dmin(r__2,r__3); /* Improve the estimate of the spectral diameter */ spdiam = isrght - isleft; } else { /* Case of bisection */ /* Find approximations to the wanted extremal eigenvalues */ /* Computing MAX */ r__2 = gl, r__3 = w[wbegin] - werr[wbegin] - eps * 100.f * (r__1 = w[wbegin] - werr[wbegin], dabs(r__1)); isleft = dmax(r__2,r__3); /* Computing MIN */ r__2 = gu, r__3 = w[wend] + werr[wend] + eps * 100.f * (r__1 = w[ wend] + werr[wend], dabs(r__1)); isrght = dmin(r__2,r__3); } /* Decide whether the base representation for the current block */ /* L_JBLK D_JBLK L_JBLK^T = T_JBLK - sigma_JBLK I */ /* should be on the left or the right end of the current block. */ /* The strategy is to shift to the end which is "more populated" */ /* Furthermore, decide whether to use DQDS for the computation of */ /* the eigenvalue approximations at the end of SLARRE or bisection. */ /* dqds is chosen if all eigenvalues are desired or the number of */ /* eigenvalues to be computed is large compared to the blocksize. */ if (irange == 1 && ! forceb) { /* If all the eigenvalues have to be computed, we use dqd */ usedqd = TRUE_; /* INDL is the local index of the first eigenvalue to compute */ indl = 1; indu = in; /* MB = number of eigenvalues to compute */ mb = in; wend = wbegin + mb - 1; /* Define 1/4 and 3/4 points of the spectrum */ s1 = isleft + spdiam * .25f; s2 = isrght - spdiam * .25f; } else { /* SLARRD has computed IBLOCK and INDEXW for each eigenvalue */ /* approximation. */ /* choose sigma */ if (usedqd) { s1 = isleft + spdiam * .25f; s2 = isrght - spdiam * .25f; } else { tmp = dmin(isrght,*vu) - dmax(isleft,*vl); s1 = dmax(isleft,*vl) + tmp * .25f; s2 = dmin(isrght,*vu) - tmp * .25f; } } /* Compute the negcount at the 1/4 and 3/4 points */ if (mb > 1) { slarrc_("T", &in, &s1, &s2, &d__[ibegin], &e[ibegin], pivmin, & cnt, &cnt1, &cnt2, &iinfo); } if (mb == 1) { sigma = gl; sgndef = 1.f; } else if (cnt1 - indl >= indu - cnt2) { if (irange == 1 && ! forceb) { sigma = dmax(isleft,gl); } else if (usedqd) { /* use Gerschgorin bound as shift to get pos def matrix */ /* for dqds */ sigma = isleft; } else { /* use approximation of the first desired eigenvalue of the */ /* block as shift */ sigma = dmax(isleft,*vl); } sgndef = 1.f; } else { if (irange == 1 && ! forceb) { sigma = dmin(isrght,gu); } else if (usedqd) { /* use Gerschgorin bound as shift to get neg def matrix */ /* for dqds */ sigma = isrght; } else { /* use approximation of the first desired eigenvalue of the */ /* block as shift */ sigma = dmin(isrght,*vu); } sgndef = -1.f; } /* An initial SIGMA has been chosen that will be used for computing */ /* T - SIGMA I = L D L^T */ /* Define the increment TAU of the shift in case the initial shift */ /* needs to be refined to obtain a factorization with not too much */ /* element growth. */ if (usedqd) { /* The initial SIGMA was to the outer end of the spectrum */ /* the matrix is definite and we need not retreat. */ tau = spdiam * eps * *n + *pivmin * 2.f; } else { if (mb > 1) { clwdth = w[wend] + werr[wend] - w[wbegin] - werr[wbegin]; avgap = (r__1 = clwdth / (real) (wend - wbegin), dabs(r__1)); if (sgndef == 1.f) { /* Computing MAX */ r__1 = wgap[wbegin]; tau = dmax(r__1,avgap) * .5f; /* Computing MAX */ r__1 = tau, r__2 = werr[wbegin]; tau = dmax(r__1,r__2); } else { /* Computing MAX */ r__1 = wgap[wend - 1]; tau = dmax(r__1,avgap) * .5f; /* Computing MAX */ r__1 = tau, r__2 = werr[wend]; tau = dmax(r__1,r__2); } } else { tau = werr[wbegin]; } } for (idum = 1; idum <= 6; ++idum) { /* Compute L D L^T factorization of tridiagonal matrix T - sigma I. */ /* Store D in WORK(1:IN), L in WORK(IN+1:2*IN), and reciprocals of */ /* pivots in WORK(2*IN+1:3*IN) */ dpivot = d__[ibegin] - sigma; work[1] = dpivot; dmax__ = dabs(work[1]); j = ibegin; i__2 = in - 1; for (i__ = 1; i__ <= i__2; ++i__) { work[(in << 1) + i__] = 1.f / work[i__]; tmp = e[j] * work[(in << 1) + i__]; work[in + i__] = tmp; dpivot = d__[j + 1] - sigma - tmp * e[j]; work[i__ + 1] = dpivot; /* Computing MAX */ r__1 = dmax__, r__2 = dabs(dpivot); dmax__ = dmax(r__1,r__2); ++j; /* L70: */ } /* check for element growth */ if (dmax__ > spdiam * 64.f) { norep = TRUE_; } else { norep = FALSE_; } if (usedqd && ! norep) { /* Ensure the definiteness of the representation */ /* All entries of D (of L D L^T) must have the same sign */ i__2 = in; for (i__ = 1; i__ <= i__2; ++i__) { tmp = sgndef * work[i__]; if (tmp < 0.f) { norep = TRUE_; } /* L71: */ } } if (norep) { /* Note that in the case of IRANGE=ALLRNG, we use the Gerschgorin */ /* shift which makes the matrix definite. So we should end up */ /* here really only in the case of IRANGE = VALRNG or INDRNG. */ if (idum == 5) { if (sgndef == 1.f) { /* The fudged Gerschgorin shift should succeed */ sigma = gl - spdiam * 2.f * eps * *n - *pivmin * 4.f; } else { sigma = gu + spdiam * 2.f * eps * *n + *pivmin * 4.f; } } else { sigma -= sgndef * tau; tau *= 2.f; } } else { /* an initial RRR is found */ goto L83; } /* L80: */ } /* if the program reaches this point, no base representation could be */ /* found in MAXTRY iterations. */ *info = 2; return 0; L83: /* At this point, we have found an initial base representation */ /* T - SIGMA I = L D L^T with not too much element growth. */ /* Store the shift. */ e[iend] = sigma; /* Store D and L. */ scopy_(&in, &work[1], &c__1, &d__[ibegin], &c__1); i__2 = in - 1; scopy_(&i__2, &work[in + 1], &c__1, &e[ibegin], &c__1); if (mb > 1) { /* Perturb each entry of the base representation by a small */ /* (but random) relative amount to overcome difficulties with */ /* glued matrices. */ for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = 1; /* L122: */ } i__2 = (in << 1) - 1; slarnv_(&c__2, iseed, &i__2, &work[1]); i__2 = in - 1; for (i__ = 1; i__ <= i__2; ++i__) { d__[ibegin + i__ - 1] *= eps * 4.f * work[i__] + 1.f; e[ibegin + i__ - 1] *= eps * 4.f * work[in + i__] + 1.f; /* L125: */ } d__[iend] *= eps * 4.f * work[in] + 1.f; } /* Don't update the Gerschgorin intervals because keeping track */ /* of the updates would be too much work in SLARRV. */ /* We update W instead and use it to locate the proper Gerschgorin */ /* intervals. */ /* Compute the required eigenvalues of L D L' by bisection or dqds */ if (! usedqd) { /* If SLARRD has been used, shift the eigenvalue approximations */ /* according to their representation. This is necessary for */ /* a uniform SLARRV since dqds computes eigenvalues of the */ /* shifted representation. In SLARRV, W will always hold the */ /* UNshifted eigenvalue approximation. */ i__2 = wend; for (j = wbegin; j <= i__2; ++j) { w[j] -= sigma; werr[j] += (r__1 = w[j], dabs(r__1)) * eps; /* L134: */ } /* call SLARRB to reduce eigenvalue error of the approximations */ /* from SLARRD */ i__2 = iend - 1; for (i__ = ibegin; i__ <= i__2; ++i__) { /* Computing 2nd power */ r__1 = e[i__]; work[i__] = d__[i__] * (r__1 * r__1); /* L135: */ } /* use bisection to find EV from INDL to INDU */ i__2 = indl - 1; slarrb_(&in, &d__[ibegin], &work[ibegin], &indl, &indu, rtol1, rtol2, &i__2, &w[wbegin], &wgap[wbegin], &werr[wbegin], & work[(*n << 1) + 1], &iwork[1], pivmin, &spdiam, &in, & iinfo); if (iinfo != 0) { *info = -4; return 0; } /* SLARRB computes all gaps correctly except for the last one */ /* Record distance to VU/GU */ /* Computing MAX */ r__1 = 0.f, r__2 = *vu - sigma - (w[wend] + werr[wend]); wgap[wend] = dmax(r__1,r__2); i__2 = indu; for (i__ = indl; i__ <= i__2; ++i__) { ++(*m); iblock[*m] = jblk; indexw[*m] = i__; /* L138: */ } } else { /* Call dqds to get all eigs (and then possibly delete unwanted */ /* eigenvalues). */ /* Note that dqds finds the eigenvalues of the L D L^T representation */ /* of T to high relative accuracy. High relative accuracy */ /* might be lost when the shift of the RRR is subtracted to obtain */ /* the eigenvalues of T. However, T is not guaranteed to define its */ /* eigenvalues to high relative accuracy anyway. */ /* Set RTOL to the order of the tolerance used in SLASQ2 */ /* This is an ESTIMATED error, the worst case bound is 4*N*EPS */ /* which is usually too large and requires unnecessary work to be */ /* done by bisection when computing the eigenvectors */ rtol = log((real) in) * 4.f * eps; j = ibegin; i__2 = in - 1; for (i__ = 1; i__ <= i__2; ++i__) { work[(i__ << 1) - 1] = (r__1 = d__[j], dabs(r__1)); work[i__ * 2] = e[j] * e[j] * work[(i__ << 1) - 1]; ++j; /* L140: */ } work[(in << 1) - 1] = (r__1 = d__[iend], dabs(r__1)); work[in * 2] = 0.f; slasq2_(&in, &work[1], &iinfo); if (iinfo != 0) { /* If IINFO = -5 then an index is part of a tight cluster */ /* and should be changed. The index is in IWORK(1) and the */ /* gap is in WORK(N+1) */ *info = -5; return 0; } else { /* Test that all eigenvalues are positive as expected */ i__2 = in; for (i__ = 1; i__ <= i__2; ++i__) { if (work[i__] < 0.f) { *info = -6; return 0; } /* L149: */ } } if (sgndef > 0.f) { i__2 = indu; for (i__ = indl; i__ <= i__2; ++i__) { ++(*m); w[*m] = work[in - i__ + 1]; iblock[*m] = jblk; indexw[*m] = i__; /* L150: */ } } else { i__2 = indu; for (i__ = indl; i__ <= i__2; ++i__) { ++(*m); w[*m] = -work[i__]; iblock[*m] = jblk; indexw[*m] = i__; /* L160: */ } } i__2 = *m; for (i__ = *m - mb + 1; i__ <= i__2; ++i__) { /* the value of RTOL below should be the tolerance in SLASQ2 */ werr[i__] = rtol * (r__1 = w[i__], dabs(r__1)); /* L165: */ } i__2 = *m - 1; for (i__ = *m - mb + 1; i__ <= i__2; ++i__) { /* compute the right gap between the intervals */ /* Computing MAX */ r__1 = 0.f, r__2 = w[i__ + 1] - werr[i__ + 1] - (w[i__] + werr[i__]); wgap[i__] = dmax(r__1,r__2); /* L166: */ } /* Computing MAX */ r__1 = 0.f, r__2 = *vu - sigma - (w[*m] + werr[*m]); wgap[*m] = dmax(r__1,r__2); } /* proceed with next block */ ibegin = iend + 1; wbegin = wend + 1; L170: ; } return 0; /* end of SLARRE */ } /* slarre_ */