/*#****************************************************************************** ** IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. ** ** By downloading, copying, installing or using the software you agree to this license. ** If you do not agree to this license, do not download, install, ** copy or use the software. ** ** ** HVStools : interfaces allowing OpenCV users to integrate Human Vision System models. Presented models originate from Jeanny Herault's original research and have been reused and adapted by the author&collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa-Lab. ** Use: extract still images & image sequences features, from contours details to motion spatio-temporal features, etc. for high level visual scene analysis. Also contribute to image enhancement/compression such as tone mapping. ** ** Maintainers : Listic lab (code author current affiliation & applications) and Gipsa Lab (original research origins & applications) ** ** Creation - enhancement process 2007-2011 ** Author: Alexandre Benoit (benoit.alexandre.vision@gmail.com), LISTIC lab, Annecy le vieux, France ** ** Theses algorithm have been developped by Alexandre BENOIT since his thesis with Alice Caplier at Gipsa-Lab (www.gipsa-lab.inpg.fr) and the research he pursues at LISTIC Lab (www.listic.univ-savoie.fr). ** Refer to the following research paper for more information: ** Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011 ** This work have been carried out thanks to Jeanny Herault who's research and great discussions are the basis of all this work, please take a look at his book: ** Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891. ** ** The retina filter includes the research contributions of phd/research collegues from which code has been redrawn by the author : ** _take a look at the retinacolor.hpp module to discover Brice Chaix de Lavarene color mosaicing/demosaicing and the reference paper: ** ====> B. Chaix de Lavarene, D. Alleysson, B. Durette, J. Herault (2007). "Efficient demosaicing through recursive filtering", IEEE International Conference on Image Processing ICIP 2007 ** _take a look at imagelogpolprojection.hpp to discover retina spatial log sampling which originates from Barthelemy Durette phd with Jeanny Herault. A Retina / V1 cortex projection is also proposed and originates from Jeanny's discussions. ** ====> more informations in the above cited Jeanny Heraults's book. ** ** License Agreement ** For Open Source Computer Vision Library ** ** Copyright (C) 2000-2008, Intel Corporation, all rights reserved. ** Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved. ** ** For Human Visual System tools (hvstools) ** Copyright (C) 2007-2011, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved. ** ** Third party copyrights are property of their respective owners. ** ** Redistribution and use in source and binary forms, with or without modification, ** are permitted provided that the following conditions are met: ** ** * Redistributions of source code must retain the above copyright notice, ** this list of conditions and the following disclaimer. ** ** * Redistributions in binary form must reproduce the above copyright notice, ** this list of conditions and the following disclaimer in the documentation ** and/or other materials provided with the distribution. ** ** * The name of the copyright holders may not be used to endorse or promote products ** derived from this software without specific prior written permission. ** ** This software is provided by the copyright holders and contributors "as is" and ** any express or implied warranties, including, but not limited to, the implied ** warranties of merchantability and fitness for a particular purpose are disclaimed. ** In no event shall the Intel Corporation or contributors be liable for any direct, ** indirect, incidental, special, exemplary, or consequential damages ** (including, but not limited to, procurement of substitute goods or services; ** loss of use, data, or profits; or business interruption) however caused ** and on any theory of liability, whether in contract, strict liability, ** or tort (including negligence or otherwise) arising in any way out of ** the use of this software, even if advised of the possibility of such damage. *******************************************************************************/ #ifndef IMAGELOGPOLPROJECTION_H_ #define IMAGELOGPOLPROJECTION_H_ /** * @class ImageLogPolProjection * @brief class able to perform a log sampling of an image input (models the log sampling of the photoreceptors of the retina) * or a log polar projection which models the retina information projection on the primary visual cortex: a linear projection in the center for detail analysis and a log projection of the borders (low spatial frequency motion information in general) * * collaboration: Barthelemy DURETTE who experimented the retina log projection -> "Traitement visuels Bio mimtiques pour la supplance perceptive", internal technical report, May 2005, Gipsa-lab/DIS, Grenoble, FRANCE * * * TYPICAL USE: * * // create object, here for a log sampling (keyword:RETINALOGPROJECTION): (dynamic object allocation sample) * ImageLogPolProjection *imageSamplingTool; * imageSamplingTool = new ImageLogPolProjection(frameSizeRows, frameSizeColumns, RETINALOGPROJECTION); * * // init log projection: * imageSamplingTool->initProjection(1.0, 15.0); * * // during program execution, call the log transform applied to a frame called "FrameBuffer" : * imageSamplingTool->runProjection(FrameBuffer); * // get output frame and its size: * const unsigned int logSampledFrame_nbRows=imageSamplingTool->getOutputNBrows(); * const unsigned int logSampledFrame_nbColumns=imageSamplingTool->getOutputNBcolumns(); * const double *logSampledFrame=imageSamplingTool->getSampledFrame(); * * // at the end of the program, destroy object: * delete imageSamplingTool; * * @author Alexandre BENOIT, benoit.alexandre.vision@gmail.com, LISTIC : www.listic.univ-savoie.fr, Gipsa-Lab, France: www.gipsa-lab.inpg.fr/ * Creation date 2007 */ //#define __IMAGELOGPOLPROJECTION_DEBUG // used for std output debug information #include "basicretinafilter.hpp" namespace cv { class ImageLogPolProjection:public BasicRetinaFilter { public: enum PROJECTIONTYPE{RETINALOGPROJECTION, CORTEXLOGPOLARPROJECTION}; /** * constructor, just specifies the image input size and the projection type, no projection initialisation is done * -> use initLogRetinaSampling() or initLogPolarCortexSampling() for that * @param nbRows: number of rows of the input image * @param nbColumns: number of columns of the input image * @param projection: the type of projection, RETINALOGPROJECTION or CORTEXLOGPOLARPROJECTION * @param colorMode: specifies if the projection is applied on a grayscale image (false) or color images (3 layers) (true) */ ImageLogPolProjection(const unsigned int nbRows, const unsigned int nbColumns, const PROJECTIONTYPE projection, const bool colorMode=false); /** * standard destructor */ virtual ~ImageLogPolProjection(); /** * function that clears all buffers of the object */ void clearAllBuffers(); /** * resize retina color filter object (resize all allocated buffers) * @param NBrows: the new height size * @param NBcolumns: the new width size */ void resize(const unsigned int NBrows, const unsigned int NBcolumns); /** * init function depending on the projection type * @param reductionFactor: the size reduction factor of the ouptup image in regard of the size of the input image, must be superior to 1 * @param samplingStrenght: specifies the strenght of the log compression effect (magnifying coefficient) * @return true if the init was performed without any errors */ bool initProjection(const double reductionFactor, const double samplingStrenght); /** * main funtion of the class: run projection function * @param inputFrame: the input frame to be processed * @param colorMode: the input buffer color mode: false=gray levels, true = 3 color channels mode * @return the output frame */ std::valarray &runProjection(const std::valarray &inputFrame, const bool colorMode=false); /** * @return the numbers of rows (height) of the images OUTPUTS of the object */ inline unsigned int getOutputNBrows(){return _outputNBrows;}; /** * @return the numbers of columns (width) of the images OUTPUTS of the object */ inline unsigned int getOutputNBcolumns(){return _outputNBcolumns;}; /** * main funtion of the class: run projection function * @param size: one of the input frame initial dimensions to be processed * @return the output frame dimension */ inline static unsigned int predictOutputSize(const unsigned int size, const double reductionFactor){return (unsigned int)((double)size/reductionFactor);}; /** * @return the output of the filter which applies an irregular Low Pass spatial filter to the imag input (see function */ inline const std::valarray &getIrregularLPfilteredInputFrame() const {return _irregularLPfilteredFrame;}; /** * function which allows to retrieve the output frame which was updated after the "runProjection(...) function BasicRetinaFilter::runProgressiveFilter(...) * @return the projection result */ inline const std::valarray &getSampledFrame() const {return _sampledFrame;}; /** * function which allows gives the tranformation table, its size is (getNBrows()*getNBcolumns()*2) * @return the transformation matrix [outputPixIndex_i, inputPixIndex_i, outputPixIndex_i+1, inputPixIndex_i+1....] */ inline const std::valarray &getSamplingMap() const {return _transformTable;}; inline double getOriginalRadiusLength(const double projectedRadiusLength){return _azero/(_alim-projectedRadiusLength*2.0/_minDimension);}; // unsigned int getInputPixelIndex(const unsigned int ){ return _transformTable[index*2+1]}; private: PROJECTIONTYPE _selectedProjection; // size of the image output unsigned int _outputNBrows; unsigned int _outputNBcolumns; unsigned int _outputNBpixels; unsigned int _outputDoubleNBpixels; unsigned int _inputDoubleNBpixels; // is the object able to manage color flag bool _colorModeCapable; // sampling strenght factor double _samplingStrenght; // sampling reduction factor double _reductionFactor; // log sampling parameters double _azero; double _alim; double _minDimension; // template buffers std::valarray_sampledFrame; std::valarray&_tempBuffer; std::valarray_transformTable; std::valarray &_irregularLPfilteredFrame; // just a reference for easier understanding unsigned int _usefullpixelIndex; // init transformation tables bool _computeLogProjection(); bool _computeLogPolarProjection(); // specifies if init was done correctly bool _initOK; // private init projections functions called by "initProjection(...)" function bool _initLogRetinaSampling(const double reductionFactor, const double samplingStrenght); bool _initLogPolarCortexSampling(const double reductionFactor, const double samplingStrenght); ImageLogPolProjection(const ImageLogPolProjection&); ImageLogPolProjection& operator=(const ImageLogPolProjection&); }; } #endif /*IMAGELOGPOLPROJECTION_H_*/