/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Copyright (C) 2017, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "../precomp.hpp" #include "layers_common.hpp" #include "../op_halide.hpp" #include "../op_inf_engine.hpp" #include #include using std::max; #ifdef HAVE_OPENCL #include "opencl_kernels_dnn.hpp" using namespace cv::dnn::ocl4dnn; #endif namespace cv { namespace dnn { class SoftMaxLayerImpl CV_FINAL : public SoftmaxLayer { public: SoftMaxLayerImpl(const LayerParams& params) { axisRaw = params.get("axis", 1); logSoftMax = params.get("log_softmax", false); setParamsFrom(params); } #ifdef HAVE_OPENCL Ptr > softmaxOp; #endif bool getMemoryShapes(const std::vector &inputs, const int requiredOutputs, std::vector &outputs, std::vector &internals) const CV_OVERRIDE { bool inplace = Layer::getMemoryShapes(inputs, requiredOutputs, outputs, internals); MatShape shape = inputs[0]; int cAxis = clamp(axisRaw, shape.size()); shape[cAxis] = 1; internals.assign(1, shape); return inplace; } virtual bool supportBackend(int backendId) CV_OVERRIDE { return backendId == DNN_BACKEND_DEFAULT || backendId == DNN_BACKEND_HALIDE && haveHalide() && axisRaw == 1 || backendId == DNN_BACKEND_INFERENCE_ENGINE && haveInfEngine() && !logSoftMax; } #ifdef HAVE_OPENCL virtual void finalize(const std::vector &inputs, std::vector &outputs) CV_OVERRIDE { softmaxOp.release(); } bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays itns) { std::vector inputs; std::vector outputs; std::vector internals; inps.getUMatVector(inputs); outs.getUMatVector(outputs); itns.getUMatVector(internals); if (softmaxOp.empty()) { OCL4DNNSoftmaxConfig config; config.in_shape = shape(inputs[0]); config.axis = axisRaw; config.channels = inputs[0].size[axisRaw]; config.logsoftmax = logSoftMax; softmaxOp = Ptr >(new OCL4DNNSoftmax(config)); } UMat& src = inputs[0]; UMat& dstMat = outputs[0]; if (softmaxOp->Forward(src, dstMat)) return true; UMat& bufMat = internals[0]; src.copyTo(dstMat); int axis = clamp(axisRaw, src.dims); MatShape s = shape(src); size_t outerSize = total(s, 0, axis); size_t channels = src.size[axis]; size_t innerSize = total(s, axis + 1); String buildOpts = String("-DT=") + ocl::typeToStr(src.type()); ocl::Kernel kmax, ksub, ksum, kdiv; if (!kmax.create("kernel_channel_max", ocl::dnn::softmax_oclsrc, buildOpts)) return false; if (!ksub.create("kernel_channel_subtract", ocl::dnn::softmax_oclsrc, buildOpts)) return false; if (!ksum.create("kernel_channel_sum", ocl::dnn::softmax_oclsrc, buildOpts)) return false; if (logSoftMax) buildOpts += " -DLOG_SOFTMAX "; if (!kdiv.create("kernel_channel_div", ocl::dnn::softmax_oclsrc, buildOpts)) return false; size_t wgSize = ocl::Device::getDefault().maxWorkGroupSize(); size_t bufSize = internals[0].total(); size_t totalSize = src.total(); // adjust local/global size size_t internal_localSize[1] = { (bufSize == 1) ? 1 : wgSize }; size_t internal_globalSize[1] = { divUp(bufSize, (unsigned int)internal_localSize[0]) * internal_localSize[0] }; // adjust local/global size (total) size_t total_localSize[1] = { (totalSize == 1) ? 1 : wgSize }; size_t total_globalSize[1] = { divUp(totalSize, (unsigned int)total_localSize[0]) * total_localSize[0] }; kmax.args((int)outerSize, (int)channels, (int)innerSize, ocl::KernelArg::PtrReadOnly(dstMat), ocl::KernelArg::PtrReadWrite(bufMat)); if (!kmax.run(1, internal_globalSize, internal_localSize, false)) return false; ksub.args((int)totalSize, (int)outerSize, (int)channels, (int)innerSize, ocl::KernelArg::PtrReadOnly(bufMat), ocl::KernelArg::PtrReadWrite(dstMat)); if (!ksub.run(1, total_globalSize, total_localSize, false)) return false; cv::exp(dstMat, dstMat); ksum.args((int)outerSize, (int)channels, (int)innerSize, ocl::KernelArg::PtrReadOnly(dstMat), ocl::KernelArg::PtrReadWrite(bufMat)); if (!ksum.run(1, internal_globalSize, internal_localSize, false)) return false; kdiv.args((int)totalSize, (int)outerSize, (int)channels, (int)innerSize, ocl::KernelArg::PtrReadOnly(bufMat), ocl::KernelArg::PtrReadWrite(dstMat)); if (!kdiv.run(1, total_globalSize, total_localSize, false)) return false; return true; } #endif void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE { CV_TRACE_FUNCTION(); CV_TRACE_ARG_VALUE(name, "name", name.c_str()); CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) && OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()), forward_ocl(inputs_arr, outputs_arr, internals_arr)) Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr); } void forward(std::vector &inputs, std::vector &outputs, std::vector &internals) CV_OVERRIDE { CV_TRACE_FUNCTION(); CV_TRACE_ARG_VALUE(name, "name", name.c_str()); const Mat &src = *inputs[0]; Mat &dst = outputs[0]; int axis = clamp(axisRaw, src.dims); size_t outerSize = src.total(0, axis), channels = src.size[axis], innerSize = src.total(axis + 1); CV_Assert(src.type() == CV_32F); CV_Assert(src.isContinuous() && dst.isContinuous()); const float *srcPtr = src.ptr(); float *dstPtr = dst.ptr(); float *bufPtr = internals[0].ptr(); size_t outerStep = src.total(axis); size_t cnStep = src.total(axis + 1); //compute max along axis for (size_t outerDim = 0; outerDim < outerSize; outerDim++) { size_t srcOffset = outerDim * outerStep; size_t bufOffset = outerDim * cnStep; memcpy(bufPtr + bufOffset, srcPtr + srcOffset, innerSize * sizeof(float)); for (size_t cnDim = 1; cnDim < channels; cnDim++) { for (size_t i = 0; i < innerSize; i++) bufPtr[bufOffset + i] = std::max(bufPtr[bufOffset + i], srcPtr[srcOffset + cnDim * cnStep + i]); } } //subtract max for (size_t outerDim = 0; outerDim < outerSize; outerDim++) { size_t srcOffset = outerDim * outerStep; size_t bufOffset = outerDim * cnStep; for (size_t cnDim = 0; cnDim < channels; cnDim++) { const int offset = srcOffset + cnDim * cnStep; for (size_t i = 0; i < innerSize; i++) dstPtr[offset + i] = srcPtr[offset + i] - bufPtr[bufOffset + i]; } } cv::exp(dst, dst); for (size_t outerDim = 0; outerDim < outerSize; outerDim++) { size_t srcOffset = outerDim * outerStep; size_t bufOffset = outerDim * cnStep; //sum exp along axis for (size_t i = 0; i < innerSize; i++) bufPtr[bufOffset + i] = 0.f; for (size_t cnDim = 0; cnDim < channels; cnDim++) { const int offset = srcOffset + cnDim * cnStep; for (size_t i = 0; i < innerSize; i++) bufPtr[bufOffset + i] += dstPtr[offset + i]; } //divide by computed sum for (size_t cnDim = 0; cnDim < channels; cnDim++) { const int offset = srcOffset + cnDim * cnStep; for (size_t i = 0; i < innerSize; i++) dstPtr[offset + i] /= bufPtr[bufOffset + i]; } if (logSoftMax) { for (size_t cnDim = 0; cnDim < channels; cnDim++) { const int offset = srcOffset + cnDim * cnStep; for (size_t i = 0; i < innerSize; i++) dstPtr[offset + i] = log(dstPtr[offset + i]); } } } } virtual Ptr initHalide(const std::vector > &inputs) CV_OVERRIDE { #ifdef HAVE_HALIDE Halide::Buffer inputBuffer = halideBuffer(inputs[0]); int inW, inH, inC, inN; getCanonicalSize(inputBuffer, &inW, &inH, &inC, &inN); if (inW != 1 || inH != 1) CV_Error(cv::Error::StsNotImplemented, "Halide backend for SoftMax with spatial size " "more than 1x1 is not implemented"); Halide::Var x("x"), y("y"), c("c"), n("n"); Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name)); Halide::Func expInput("expInput"); Halide::RDom r(0, inW, 0, inH, 0, inC); expInput(x, y, c, n) = exp(inputBuffer(x, y, c, n)); Halide::Expr globalSum = sum(expInput(r.x, r.y, r.z, n)); top(x, y, c, n) = expInput(x, y, c, n) / globalSum; return Ptr(new HalideBackendNode(top)); #endif // HAVE_HALIDE return Ptr(); } virtual Ptr initInfEngine(const std::vector >&) CV_OVERRIDE { #ifdef HAVE_INF_ENGINE InferenceEngine::LayerParams lp; lp.name = name; lp.type = "SoftMax"; lp.precision = InferenceEngine::Precision::FP32; std::shared_ptr ieLayer(new InferenceEngine::SoftMaxLayer(lp)); ieLayer->axis = axisRaw; return Ptr(new InfEngineBackendNode(ieLayer)); #endif // HAVE_INF_ENGINE return Ptr(); } int64 getFLOPS(const std::vector &inputs, const std::vector &outputs) const CV_OVERRIDE { (void)outputs; // suppress unused variable warning int64 flops = 0; for (int i = 0; i < inputs.size(); i++) { flops += 4*total(inputs[i]); } return flops; } int axisRaw; }; Ptr SoftmaxLayer::create(const LayerParams& params) { return Ptr(new SoftMaxLayerImpl(params)); } } }