#ifndef OPENCV_GAPI_PIPELINE_MODELING_TOOL_PIPELINE_BUILDER_HPP #define OPENCV_GAPI_PIPELINE_MODELING_TOOL_PIPELINE_BUILDER_HPP #include #include // cv::gapi::GNetPackage #include // cv::gapi::wip::IStreamSource #include // cv::gapi::ie::Params #include // cv::gapi::GCompileArgs #include // GAPI_OCV_KERNEL #include // G_API_OP #include "pipeline.hpp" #include "utils.hpp" struct Edge { struct P { std::string name; size_t port; }; P src; P dst; }; struct CallParams { std::string name; size_t call_every_nth; }; struct CallNode { using F = std::function; CallParams params; F run; }; struct DataNode { cv::optional arg; }; struct Node { using Ptr = std::shared_ptr; using WPtr = std::weak_ptr; using Kind = cv::util::variant; std::vector in_nodes; std::vector out_nodes; Kind kind; }; struct SubGraphCall { G_API_OP(GSubGraph, , "custom.subgraph") { static cv::GMatDesc outMeta(const cv::GMatDesc& in, cv::GComputation comp, cv::GCompileArgs compile_args, const size_t call_every_nth) { GAPI_Assert(call_every_nth > 0); auto out_metas = comp.compile(in, std::move(compile_args)).outMetas(); GAPI_Assert(out_metas.size() == 1u); GAPI_Assert(cv::util::holds_alternative(out_metas[0])); return cv::util::get(out_metas[0]); } }; struct SubGraphState { cv::Mat last_result; cv::GCompiled cc; int call_counter = 0; }; GAPI_OCV_KERNEL_ST(SubGraphImpl, GSubGraph, SubGraphState) { static void setup(const cv::GMatDesc& in, cv::GComputation comp, cv::GCompileArgs compile_args, const size_t /*call_every_nth*/, std::shared_ptr& state, const cv::GCompileArgs& /*args*/) { state.reset(new SubGraphState{}); state->cc = comp.compile(in, std::move(compile_args)); auto out_desc = cv::util::get(state->cc.outMetas()[0]); utils::createNDMat(state->last_result, out_desc.dims, out_desc.depth); } static void run(const cv::Mat& in, cv::GComputation /*comp*/, cv::GCompileArgs /*compile_args*/, const size_t call_every_nth, cv::Mat& out, SubGraphState& state) { // NB: Make a call on the first iteration and skip the furthers. if (state.call_counter == 0) { state.cc(in, state.last_result); } state.last_result.copyTo(out); state.call_counter = (state.call_counter + 1) % call_every_nth; } }; void operator()(const cv::GProtoArgs& inputs, cv::GProtoArgs& outputs); size_t numInputs() const { return 1; } size_t numOutputs() const { return 1; } cv::GComputation comp; cv::GCompileArgs compile_args; size_t call_every_nth; }; void SubGraphCall::operator()(const cv::GProtoArgs& inputs, cv::GProtoArgs& outputs) { GAPI_Assert(inputs.size() == 1u); GAPI_Assert(cv::util::holds_alternative(inputs[0])); GAPI_Assert(outputs.empty()); auto in = cv::util::get(inputs[0]); outputs.emplace_back(GSubGraph::on(in, comp, compile_args, call_every_nth)); } struct DummyCall { G_API_OP(GDummy, , "custom.dummy") { static cv::GMatDesc outMeta(const cv::GMatDesc& /* in */, double /* time */, const OutputDescr& output) { if (output.dims.size() == 2) { return cv::GMatDesc(output.precision, 1, // NB: Dims[H, W] -> Size(W, H) cv::Size(output.dims[1], output.dims[0])); } return cv::GMatDesc(output.precision, output.dims); } }; struct DummyState { cv::Mat mat; }; // NB: Generate random mat once and then // copy to dst buffer on every iteration. GAPI_OCV_KERNEL_ST(GCPUDummy, GDummy, DummyState) { static void setup(const cv::GMatDesc& /*in*/, double /*time*/, const OutputDescr& output, std::shared_ptr& state, const cv::GCompileArgs& /*args*/) { state.reset(new DummyState{}); utils::createNDMat(state->mat, output.dims, output.precision); utils::generateRandom(state->mat); } static void run(const cv::Mat& /*in_mat*/, double time, const OutputDescr& /*output*/, cv::Mat& out_mat, DummyState& state) { using namespace std::chrono; double total = 0; auto start = high_resolution_clock::now(); state.mat.copyTo(out_mat); while (total < time) { total = duration_cast>( high_resolution_clock::now() - start).count(); } } }; void operator()(const cv::GProtoArgs& inputs, cv::GProtoArgs& outputs); size_t numInputs() const { return 1; } size_t numOutputs() const { return 1; } double time; OutputDescr output; }; void DummyCall::operator()(const cv::GProtoArgs& inputs, cv::GProtoArgs& outputs) { GAPI_Assert(inputs.size() == 1u); GAPI_Assert(cv::util::holds_alternative(inputs[0])); GAPI_Assert(outputs.empty()); auto in = cv::util::get(inputs[0]); outputs.emplace_back(GDummy::on(in, time, output)); } struct InferCall { void operator()(const cv::GProtoArgs& inputs, cv::GProtoArgs& outputs); size_t numInputs() const { return input_layers.size(); } size_t numOutputs() const { return output_layers.size(); } std::string tag; std::vector input_layers; std::vector output_layers; }; void InferCall::operator()(const cv::GProtoArgs& inputs, cv::GProtoArgs& outputs) { GAPI_Assert(inputs.size() == input_layers.size()); GAPI_Assert(outputs.empty()); cv::GInferInputs g_inputs; // TODO: Add an opportunity not specify input/output layers in case // there is only single layer. for (size_t i = 0; i < inputs.size(); ++i) { // TODO: Support GFrame as well. GAPI_Assert(cv::util::holds_alternative(inputs[i])); auto in = cv::util::get(inputs[i]); g_inputs[input_layers[i]] = in; } auto g_outputs = cv::gapi::infer(tag, g_inputs); for (size_t i = 0; i < output_layers.size(); ++i) { outputs.emplace_back(g_outputs.at(output_layers[i])); } } struct SourceCall { void operator()(const cv::GProtoArgs& inputs, cv::GProtoArgs& outputs); size_t numInputs() const { return 0; } size_t numOutputs() const { return 1; } }; void SourceCall::operator()(const cv::GProtoArgs& inputs, cv::GProtoArgs& outputs) { GAPI_Assert(inputs.empty()); GAPI_Assert(outputs.empty()); // NB: Since NV12 isn't exposed source always produce GMat. outputs.emplace_back(cv::GMat()); } struct LoadPath { std::string xml; std::string bin; }; struct ImportPath { std::string blob; }; using ModelPath = cv::util::variant; struct DummyParams { double time; OutputDescr output; }; struct InferParams { std::string name; ModelPath path; std::string device; std::vector input_layers; std::vector output_layers; std::map config; cv::gapi::ie::InferMode mode; }; class PipelineBuilder { public: PipelineBuilder(); void addDummy(const CallParams& call_params, const DummyParams& dummy_params); void addInfer(const CallParams& call_params, const InferParams& infer_params); void setSource(const std::string& name, std::shared_ptr src); void addEdge(const Edge& edge); void setMode(PLMode mode); void setDumpFilePath(const std::string& dump); void setQueueCapacity(const size_t qc); void setName(const std::string& name); Pipeline::Ptr build(); private: template void addCall(const CallParams& call_params, CallT&& call); Pipeline::Ptr construct(); template using M = std::unordered_map; struct State { struct NodeEdges { std::vector input_edges; std::vector output_edges; }; M calls_map; std::vector all_calls; cv::gapi::GNetPackage networks; cv::gapi::GKernelPackage kernels; cv::GCompileArgs compile_args; cv::gapi::wip::IStreamSource::Ptr src; PLMode mode = PLMode::STREAMING; std::string name; }; std::unique_ptr m_state; }; PipelineBuilder::PipelineBuilder() : m_state(new State{}) { }; void PipelineBuilder::addDummy(const CallParams& call_params, const DummyParams& dummy_params) { m_state->kernels.include(); addCall(call_params, DummyCall{dummy_params.time, dummy_params.output}); } template void PipelineBuilder::addCall(const CallParams& call_params, CallT&& call) { size_t num_inputs = call.numInputs(); size_t num_outputs = call.numOutputs(); Node::Ptr call_node(new Node{{},{},Node::Kind{CallNode{call_params, std::move(call)}}}); // NB: Create placeholders for inputs. call_node->in_nodes.resize(num_inputs); // NB: Create outputs with empty data. for (size_t i = 0; i < num_outputs; ++i) { call_node->out_nodes.emplace_back(new Node{{call_node}, {}, Node::Kind{DataNode{}}}); } auto it = m_state->calls_map.find(call_params.name); if (it != m_state->calls_map.end()) { throw std::logic_error("Node: " + call_params.name + " already exists!"); } m_state->calls_map.emplace(call_params.name, call_node); m_state->all_calls.emplace_back(call_node); } void PipelineBuilder::addInfer(const CallParams& call_params, const InferParams& infer_params) { // NB: No default ctor for Params. std::unique_ptr> pp; if (cv::util::holds_alternative(infer_params.path)) { auto load_path = cv::util::get(infer_params.path); pp.reset(new cv::gapi::ie::Params(call_params.name, load_path.xml, load_path.bin, infer_params.device)); } else { GAPI_Assert(cv::util::holds_alternative(infer_params.path)); auto import_path = cv::util::get(infer_params.path); pp.reset(new cv::gapi::ie::Params(call_params.name, import_path.blob, infer_params.device)); } pp->pluginConfig(infer_params.config); pp->cfgInferMode(infer_params.mode); m_state->networks += cv::gapi::networks(*pp); addCall(call_params, InferCall{call_params.name, infer_params.input_layers, infer_params.output_layers}); } void PipelineBuilder::addEdge(const Edge& edge) { const auto& src_it = m_state->calls_map.find(edge.src.name); if (src_it == m_state->calls_map.end()) { throw std::logic_error("Failed to find node: " + edge.src.name); } auto src_node = src_it->second; if (src_node->out_nodes.size() <= edge.src.port) { throw std::logic_error("Failed to access node: " + edge.src.name + " by out port: " + std::to_string(edge.src.port)); } auto dst_it = m_state->calls_map.find(edge.dst.name); if (dst_it == m_state->calls_map.end()) { throw std::logic_error("Failed to find node: " + edge.dst.name); } auto dst_node = dst_it->second; if (dst_node->in_nodes.size() <= edge.dst.port) { throw std::logic_error("Failed to access node: " + edge.dst.name + " by in port: " + std::to_string(edge.dst.port)); } auto out_data = src_node->out_nodes[edge.src.port]; auto& in_data = dst_node->in_nodes[edge.dst.port]; // NB: in_data != nullptr. if (!in_data.expired()) { throw std::logic_error("Node: " + edge.dst.name + " already connected by in port: " + std::to_string(edge.dst.port)); } dst_node->in_nodes[edge.dst.port] = out_data; out_data->out_nodes.push_back(dst_node); } void PipelineBuilder::setSource(const std::string& name, std::shared_ptr src) { GAPI_Assert(!m_state->src && "Only single source pipelines are supported!"); m_state->src = src; addCall(CallParams{name, 1u/*call_every_nth*/}, SourceCall{}); } void PipelineBuilder::setMode(PLMode mode) { m_state->mode = mode; } void PipelineBuilder::setDumpFilePath(const std::string& dump) { m_state->compile_args.emplace_back(cv::graph_dump_path{dump}); } void PipelineBuilder::setQueueCapacity(const size_t qc) { m_state->compile_args.emplace_back(cv::gapi::streaming::queue_capacity{qc}); } void PipelineBuilder::setName(const std::string& name) { m_state->name = name; } static bool visit(Node::Ptr node, std::vector& sorted, std::unordered_map& visited) { if (!node) { throw std::logic_error("Found null node"); } visited[node] = 1; for (auto in : node->in_nodes) { auto in_node = in.lock(); if (visited[in_node] == 0) { if (visit(in_node, sorted, visited)) { return true; } } else if (visited[in_node] == 1) { return true; } } visited[node] = 2; sorted.push_back(node); return false; } static cv::optional> toposort(const std::vector nodes) { std::vector sorted; std::unordered_map visited; for (auto n : nodes) { if (visit(n, sorted, visited)) { return cv::optional>{}; } } return cv::util::make_optional(sorted); } Pipeline::Ptr PipelineBuilder::construct() { // NB: Unlike G-API, pipeline_builder_tool graph always starts with CALL node // (not data) that produce datas, so the call node which doesn't have // inputs is considered as "producer" node. // // Graph always starts with CALL node and ends with DATA node. // Graph example: [source] -> (source:0) -> [PP] -> (PP:0) // // The algorithm is quite simple: // 0. Verify that every call input node exists (connected). // 1. Sort all nodes by visiting only call nodes, // since there is no data nodes that's not connected with any call node, // it's guarantee that every node will be visited. // 2. Fillter call nodes. // 3. Go through every call node. // FIXME: Add toposort in case user passed nodes // in arbitrary order which is unlikely happened. // 4. Extract proto input from every input node // 5. Run call and get outputs // 6. If call node doesn't have inputs it means that it's "producer" node, // so collect all outputs to graph_inputs vector. // 7. Assign proto outputs to output data nodes, // so the next calls can use them as inputs. cv::GProtoArgs graph_inputs; cv::GProtoArgs graph_outputs; // 0. Verify that every call input node exists (connected). for (auto call_node : m_state->all_calls) { for (size_t i = 0; i < call_node->in_nodes.size(); ++i) { const auto& in_data_node = call_node->in_nodes[i]; // NB: in_data_node == nullptr. if (in_data_node.expired()) { const auto& call = cv::util::get(call_node->kind); throw std::logic_error( "Node: " + call.params.name + " in Pipeline: " + m_state->name + " has dangling input by in port: " + std::to_string(i)); } } } // (0) Sort all nodes; auto has_sorted = toposort(m_state->all_calls); if (!has_sorted) { throw std::logic_error( "Pipeline: " + m_state->name + " has cyclic dependencies") ; } auto& sorted = has_sorted.value(); // (1). Fillter call nodes. std::vector sorted_calls; for (auto n : sorted) { if (cv::util::holds_alternative(n->kind)) { sorted_calls.push_back(n); } } m_state->kernels.include(); m_state->compile_args.emplace_back(m_state->networks); m_state->compile_args.emplace_back(m_state->kernels); // (2). Go through every call node. for (auto call_node : sorted_calls) { auto& call = cv::util::get(call_node->kind); cv::GProtoArgs outputs; cv::GProtoArgs inputs; for (size_t i = 0; i < call_node->in_nodes.size(); ++i) { auto in_node = call_node->in_nodes.at(i); auto in_data = cv::util::get(in_node.lock()->kind); if (!in_data.arg.has_value()) { throw std::logic_error("data hasn't been provided"); } // (3). Extract proto input from every input node. inputs.push_back(in_data.arg.value()); } // NB: If node shouldn't be called on each iterations, // it should be wrapped into subgraph which is able to skip calling. if (call.params.call_every_nth != 1u) { // FIXME: Limitation of the subgraph operation (). // G-API doesn't support dynamic number of inputs/outputs. if (inputs.size() > 1u) { throw std::logic_error( "skip_frame_nth is supported only for single input subgraphs\n" "Current subgraph has " + std::to_string(inputs.size()) + " inputs"); } if (outputs.size() > 1u) { throw std::logic_error( "skip_frame_nth is supported only for single output subgraphs\n" "Current subgraph has " + std::to_string(inputs.size()) + " outputs"); } // FIXME: Should be generalized. // Now every subgraph contains only single node // which has single input/output. GAPI_Assert(cv::util::holds_alternative(inputs[0])); cv::GProtoArgs subgr_inputs{cv::GProtoArg{cv::GMat()}}; cv::GProtoArgs subgr_outputs; call.run(subgr_inputs, subgr_outputs); auto comp = cv::GComputation(cv::GProtoInputArgs{subgr_inputs}, cv::GProtoOutputArgs{subgr_outputs}); call = CallNode{CallParams{call.params.name, 1u/*call_every_nth*/}, SubGraphCall{std::move(comp), m_state->compile_args, call.params.call_every_nth}}; } // (4). Run call and get outputs. call.run(inputs, outputs); // (5) If call node doesn't have inputs // it means that it's input producer node (Source). if (call_node->in_nodes.empty()) { for (auto out : outputs) { graph_inputs.push_back(out); } } // (6). Assign proto outputs to output data nodes, // so the next calls can use them as inputs. GAPI_Assert(outputs.size() == call_node->out_nodes.size()); for (size_t i = 0; i < outputs.size(); ++i) { auto out_node = call_node->out_nodes[i]; auto& out_data = cv::util::get(out_node->kind); out_data.arg = cv::util::make_optional(outputs[i]); if (out_node->out_nodes.empty()) { graph_outputs.push_back(out_data.arg.value()); } } } if (m_state->mode == PLMode::STREAMING) { GAPI_Assert(graph_inputs.size() == 1); GAPI_Assert(cv::util::holds_alternative(graph_inputs[0])); // FIXME: Handle GFrame when NV12 comes. const auto& graph_input = cv::util::get(graph_inputs[0]); // NB: In case streaming mode need to expose timestamp in order to // calculate performance metrics. graph_outputs.emplace_back( cv::gapi::streaming::timestamp(graph_input).strip()); return std::make_shared(std::move(m_state->name), cv::GComputation( cv::GProtoInputArgs{graph_inputs}, cv::GProtoOutputArgs{graph_outputs}), std::move(m_state->src), std::move(m_state->compile_args), graph_outputs.size()); } GAPI_Assert(m_state->mode == PLMode::REGULAR); return std::make_shared(std::move(m_state->name), cv::GComputation( cv::GProtoInputArgs{graph_inputs}, cv::GProtoOutputArgs{graph_outputs}), std::move(m_state->src), std::move(m_state->compile_args), graph_outputs.size()); } Pipeline::Ptr PipelineBuilder::build() { auto pipeline = construct(); m_state.reset(new State{}); return pipeline; } #endif // OPENCV_GAPI_PIPELINE_MODELING_TOOL_PIPELINE_BUILDER_HPP