// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. #include "test_precomp.hpp" #ifdef HAVE_EIGEN #include #include #include "opencv2/core/eigen.hpp" #endif #include "opencv2/core/cuda.hpp" namespace opencv_test { namespace { class Core_ReduceTest : public cvtest::BaseTest { public: Core_ReduceTest() {} protected: void run( int); int checkOp( const Mat& src, int dstType, int opType, const Mat& opRes, int dim ); int checkCase( int srcType, int dstType, int dim, Size sz ); int checkDim( int dim, Size sz ); int checkSize( Size sz ); }; template void testReduce( const Mat& src, Mat& sum, Mat& avg, Mat& max, Mat& min, int dim ) { assert( src.channels() == 1 ); if( dim == 0 ) // row { sum.create( 1, src.cols, CV_64FC1 ); max.create( 1, src.cols, CV_64FC1 ); min.create( 1, src.cols, CV_64FC1 ); } else { sum.create( src.rows, 1, CV_64FC1 ); max.create( src.rows, 1, CV_64FC1 ); min.create( src.rows, 1, CV_64FC1 ); } sum.setTo(Scalar(0)); max.setTo(Scalar(-DBL_MAX)); min.setTo(Scalar(DBL_MAX)); const Mat_& src_ = src; Mat_& sum_ = (Mat_&)sum; Mat_& min_ = (Mat_&)min; Mat_& max_ = (Mat_&)max; if( dim == 0 ) { for( int ri = 0; ri < src.rows; ri++ ) { for( int ci = 0; ci < src.cols; ci++ ) { sum_(0, ci) += src_(ri, ci); max_(0, ci) = std::max( max_(0, ci), (double)src_(ri, ci) ); min_(0, ci) = std::min( min_(0, ci), (double)src_(ri, ci) ); } } } else { for( int ci = 0; ci < src.cols; ci++ ) { for( int ri = 0; ri < src.rows; ri++ ) { sum_(ri, 0) += src_(ri, ci); max_(ri, 0) = std::max( max_(ri, 0), (double)src_(ri, ci) ); min_(ri, 0) = std::min( min_(ri, 0), (double)src_(ri, ci) ); } } } sum.convertTo( avg, CV_64FC1 ); avg = avg * (1.0 / (dim==0 ? (double)src.rows : (double)src.cols)); } void getMatTypeStr( int type, string& str) { str = type == CV_8UC1 ? "CV_8UC1" : type == CV_8SC1 ? "CV_8SC1" : type == CV_16UC1 ? "CV_16UC1" : type == CV_16SC1 ? "CV_16SC1" : type == CV_32SC1 ? "CV_32SC1" : type == CV_32FC1 ? "CV_32FC1" : type == CV_64FC1 ? "CV_64FC1" : "unsupported matrix type"; } int Core_ReduceTest::checkOp( const Mat& src, int dstType, int opType, const Mat& opRes, int dim ) { int srcType = src.type(); bool support = false; if( opType == CV_REDUCE_SUM || opType == CV_REDUCE_AVG ) { if( srcType == CV_8U && (dstType == CV_32S || dstType == CV_32F || dstType == CV_64F) ) support = true; if( srcType == CV_16U && (dstType == CV_32F || dstType == CV_64F) ) support = true; if( srcType == CV_16S && (dstType == CV_32F || dstType == CV_64F) ) support = true; if( srcType == CV_32F && (dstType == CV_32F || dstType == CV_64F) ) support = true; if( srcType == CV_64F && dstType == CV_64F) support = true; } else if( opType == CV_REDUCE_MAX ) { if( srcType == CV_8U && dstType == CV_8U ) support = true; if( srcType == CV_32F && dstType == CV_32F ) support = true; if( srcType == CV_64F && dstType == CV_64F ) support = true; } else if( opType == CV_REDUCE_MIN ) { if( srcType == CV_8U && dstType == CV_8U) support = true; if( srcType == CV_32F && dstType == CV_32F) support = true; if( srcType == CV_64F && dstType == CV_64F) support = true; } if( !support ) return cvtest::TS::OK; double eps = 0.0; if ( opType == CV_REDUCE_SUM || opType == CV_REDUCE_AVG ) { if ( dstType == CV_32F ) eps = 1.e-5; else if( dstType == CV_64F ) eps = 1.e-8; else if ( dstType == CV_32S ) eps = 0.6; } assert( opRes.type() == CV_64FC1 ); Mat _dst, dst, diff; cv::reduce( src, _dst, dim, opType, dstType ); _dst.convertTo( dst, CV_64FC1 ); absdiff( opRes,dst,diff ); bool check = false; if (dstType == CV_32F || dstType == CV_64F) check = countNonZero(diff>eps*dst) > 0; else check = countNonZero(diff>eps) > 0; if( check ) { char msg[100]; const char* opTypeStr = opType == CV_REDUCE_SUM ? "CV_REDUCE_SUM" : opType == CV_REDUCE_AVG ? "CV_REDUCE_AVG" : opType == CV_REDUCE_MAX ? "CV_REDUCE_MAX" : opType == CV_REDUCE_MIN ? "CV_REDUCE_MIN" : "unknown operation type"; string srcTypeStr, dstTypeStr; getMatTypeStr( src.type(), srcTypeStr ); getMatTypeStr( dstType, dstTypeStr ); const char* dimStr = dim == 0 ? "ROWS" : "COLS"; sprintf( msg, "bad accuracy with srcType = %s, dstType = %s, opType = %s, dim = %s", srcTypeStr.c_str(), dstTypeStr.c_str(), opTypeStr, dimStr ); ts->printf( cvtest::TS::LOG, msg ); return cvtest::TS::FAIL_BAD_ACCURACY; } return cvtest::TS::OK; } int Core_ReduceTest::checkCase( int srcType, int dstType, int dim, Size sz ) { int code = cvtest::TS::OK, tempCode; Mat src, sum, avg, max, min; src.create( sz, srcType ); randu( src, Scalar(0), Scalar(100) ); if( srcType == CV_8UC1 ) testReduce( src, sum, avg, max, min, dim ); else if( srcType == CV_8SC1 ) testReduce( src, sum, avg, max, min, dim ); else if( srcType == CV_16UC1 ) testReduce( src, sum, avg, max, min, dim ); else if( srcType == CV_16SC1 ) testReduce( src, sum, avg, max, min, dim ); else if( srcType == CV_32SC1 ) testReduce( src, sum, avg, max, min, dim ); else if( srcType == CV_32FC1 ) testReduce( src, sum, avg, max, min, dim ); else if( srcType == CV_64FC1 ) testReduce( src, sum, avg, max, min, dim ); else assert( 0 ); // 1. sum tempCode = checkOp( src, dstType, CV_REDUCE_SUM, sum, dim ); code = tempCode != cvtest::TS::OK ? tempCode : code; // 2. avg tempCode = checkOp( src, dstType, CV_REDUCE_AVG, avg, dim ); code = tempCode != cvtest::TS::OK ? tempCode : code; // 3. max tempCode = checkOp( src, dstType, CV_REDUCE_MAX, max, dim ); code = tempCode != cvtest::TS::OK ? tempCode : code; // 4. min tempCode = checkOp( src, dstType, CV_REDUCE_MIN, min, dim ); code = tempCode != cvtest::TS::OK ? tempCode : code; return code; } int Core_ReduceTest::checkDim( int dim, Size sz ) { int code = cvtest::TS::OK, tempCode; // CV_8UC1 tempCode = checkCase( CV_8UC1, CV_8UC1, dim, sz ); code = tempCode != cvtest::TS::OK ? tempCode : code; tempCode = checkCase( CV_8UC1, CV_32SC1, dim, sz ); code = tempCode != cvtest::TS::OK ? tempCode : code; tempCode = checkCase( CV_8UC1, CV_32FC1, dim, sz ); code = tempCode != cvtest::TS::OK ? tempCode : code; tempCode = checkCase( CV_8UC1, CV_64FC1, dim, sz ); code = tempCode != cvtest::TS::OK ? tempCode : code; // CV_16UC1 tempCode = checkCase( CV_16UC1, CV_32FC1, dim, sz ); code = tempCode != cvtest::TS::OK ? tempCode : code; tempCode = checkCase( CV_16UC1, CV_64FC1, dim, sz ); code = tempCode != cvtest::TS::OK ? tempCode : code; // CV_16SC1 tempCode = checkCase( CV_16SC1, CV_32FC1, dim, sz ); code = tempCode != cvtest::TS::OK ? tempCode : code; tempCode = checkCase( CV_16SC1, CV_64FC1, dim, sz ); code = tempCode != cvtest::TS::OK ? tempCode : code; // CV_32FC1 tempCode = checkCase( CV_32FC1, CV_32FC1, dim, sz ); code = tempCode != cvtest::TS::OK ? tempCode : code; tempCode = checkCase( CV_32FC1, CV_64FC1, dim, sz ); code = tempCode != cvtest::TS::OK ? tempCode : code; // CV_64FC1 tempCode = checkCase( CV_64FC1, CV_64FC1, dim, sz ); code = tempCode != cvtest::TS::OK ? tempCode : code; return code; } int Core_ReduceTest::checkSize( Size sz ) { int code = cvtest::TS::OK, tempCode; tempCode = checkDim( 0, sz ); // rows code = tempCode != cvtest::TS::OK ? tempCode : code; tempCode = checkDim( 1, sz ); // cols code = tempCode != cvtest::TS::OK ? tempCode : code; return code; } void Core_ReduceTest::run( int ) { int code = cvtest::TS::OK, tempCode; tempCode = checkSize( Size(1,1) ); code = tempCode != cvtest::TS::OK ? tempCode : code; tempCode = checkSize( Size(1,100) ); code = tempCode != cvtest::TS::OK ? tempCode : code; tempCode = checkSize( Size(100,1) ); code = tempCode != cvtest::TS::OK ? tempCode : code; tempCode = checkSize( Size(1000,500) ); code = tempCode != cvtest::TS::OK ? tempCode : code; ts->set_failed_test_info( code ); } #define CHECK_C TEST(Core_PCA, accuracy) { const Size sz(200, 500); double diffPrjEps, diffBackPrjEps, prjEps, backPrjEps, evalEps, evecEps; int maxComponents = 100; double retainedVariance = 0.95; Mat rPoints(sz, CV_32FC1), rTestPoints(sz, CV_32FC1); RNG rng(12345); rng.fill( rPoints, RNG::UNIFORM, Scalar::all(0.0), Scalar::all(1.0) ); rng.fill( rTestPoints, RNG::UNIFORM, Scalar::all(0.0), Scalar::all(1.0) ); PCA rPCA( rPoints, Mat(), CV_PCA_DATA_AS_ROW, maxComponents ), cPCA; // 1. check C++ PCA & ROW Mat rPrjTestPoints = rPCA.project( rTestPoints ); Mat rBackPrjTestPoints = rPCA.backProject( rPrjTestPoints ); Mat avg(1, sz.width, CV_32FC1 ); cv::reduce( rPoints, avg, 0, CV_REDUCE_AVG ); Mat Q = rPoints - repeat( avg, rPoints.rows, 1 ), Qt = Q.t(), eval, evec; Q = Qt * Q; Q = Q /(float)rPoints.rows; eigen( Q, eval, evec ); /*SVD svd(Q); evec = svd.vt; eval = svd.w;*/ Mat subEval( maxComponents, 1, eval.type(), eval.ptr() ), subEvec( maxComponents, evec.cols, evec.type(), evec.ptr() ); #ifdef CHECK_C Mat prjTestPoints, backPrjTestPoints, cPoints = rPoints.t(), cTestPoints = rTestPoints.t(); CvMat _points, _testPoints, _avg, _eval, _evec, _prjTestPoints, _backPrjTestPoints; #endif // check eigen() double eigenEps = 1e-4; double err; for(int i = 0; i < Q.rows; i++ ) { Mat v = evec.row(i).t(); Mat Qv = Q * v; Mat lv = eval.at(i,0) * v; err = cvtest::norm(Qv, lv, NORM_L2 | NORM_RELATIVE); EXPECT_LE(err, eigenEps) << "bad accuracy of eigen(); i = " << i; } // check pca eigenvalues evalEps = 1e-5, evecEps = 5e-3; err = cvtest::norm(rPCA.eigenvalues, subEval, NORM_L2 | NORM_RELATIVE); EXPECT_LE(err , evalEps) << "pca.eigenvalues is incorrect (CV_PCA_DATA_AS_ROW)"; // check pca eigenvectors for(int i = 0; i < subEvec.rows; i++) { Mat r0 = rPCA.eigenvectors.row(i); Mat r1 = subEvec.row(i); // eigenvectors have normalized length, but both directions v and -v are valid double err1 = cvtest::norm(r0, r1, NORM_L2 | NORM_RELATIVE); double err2 = cvtest::norm(r0, -r1, NORM_L2 | NORM_RELATIVE); err = std::min(err1, err2); if (err > evecEps) { Mat tmp; absdiff(rPCA.eigenvectors, subEvec, tmp); double mval = 0; Point mloc; minMaxLoc(tmp, 0, &mval, 0, &mloc); EXPECT_LE(err, evecEps) << "pca.eigenvectors is incorrect (CV_PCA_DATA_AS_ROW) at " << i << " " << cv::format("max diff is %g at (i=%d, j=%d) (%g vs %g)\n", mval, mloc.y, mloc.x, rPCA.eigenvectors.at(mloc.y, mloc.x), subEvec.at(mloc.y, mloc.x)) << "r0=" << r0 << std::endl << "r1=" << r1 << std::endl << "err1=" << err1 << " err2=" << err2 ; } } prjEps = 1.265, backPrjEps = 1.265; for( int i = 0; i < rTestPoints.rows; i++ ) { // check pca project Mat subEvec_t = subEvec.t(); Mat prj = rTestPoints.row(i) - avg; prj *= subEvec_t; err = cvtest::norm(rPrjTestPoints.row(i), prj, NORM_L2 | NORM_RELATIVE); if (err < prjEps) { EXPECT_LE(err, prjEps) << "bad accuracy of project() (CV_PCA_DATA_AS_ROW)"; continue; } // check pca backProject Mat backPrj = rPrjTestPoints.row(i) * subEvec + avg; err = cvtest::norm(rBackPrjTestPoints.row(i), backPrj, NORM_L2 | NORM_RELATIVE); if (err > backPrjEps) { EXPECT_LE(err, backPrjEps) << "bad accuracy of backProject() (CV_PCA_DATA_AS_ROW)"; continue; } } // 2. check C++ PCA & COL cPCA( rPoints.t(), Mat(), CV_PCA_DATA_AS_COL, maxComponents ); diffPrjEps = 1, diffBackPrjEps = 1; Mat ocvPrjTestPoints = cPCA.project(rTestPoints.t()); err = cvtest::norm(cv::abs(ocvPrjTestPoints), cv::abs(rPrjTestPoints.t()), NORM_L2 | NORM_RELATIVE); ASSERT_LE(err, diffPrjEps) << "bad accuracy of project() (CV_PCA_DATA_AS_COL)"; err = cvtest::norm(cPCA.backProject(ocvPrjTestPoints), rBackPrjTestPoints.t(), NORM_L2 | NORM_RELATIVE); ASSERT_LE(err, diffBackPrjEps) << "bad accuracy of backProject() (CV_PCA_DATA_AS_COL)"; // 3. check C++ PCA w/retainedVariance cPCA( rPoints.t(), Mat(), CV_PCA_DATA_AS_COL, retainedVariance ); diffPrjEps = 1, diffBackPrjEps = 1; Mat rvPrjTestPoints = cPCA.project(rTestPoints.t()); if( cPCA.eigenvectors.rows > maxComponents) err = cvtest::norm(cv::abs(rvPrjTestPoints.rowRange(0,maxComponents)), cv::abs(rPrjTestPoints.t()), NORM_L2 | NORM_RELATIVE); else err = cvtest::norm(cv::abs(rvPrjTestPoints), cv::abs(rPrjTestPoints.colRange(0,cPCA.eigenvectors.rows).t()), NORM_L2 | NORM_RELATIVE); ASSERT_LE(err, diffPrjEps) << "bad accuracy of project() (CV_PCA_DATA_AS_COL); retainedVariance=" << retainedVariance; err = cvtest::norm(cPCA.backProject(rvPrjTestPoints), rBackPrjTestPoints.t(), NORM_L2 | NORM_RELATIVE); ASSERT_LE(err, diffBackPrjEps) << "bad accuracy of backProject() (CV_PCA_DATA_AS_COL); retainedVariance=" << retainedVariance; #ifdef CHECK_C // 4. check C PCA & ROW _points = cvMat(rPoints); _testPoints = cvMat(rTestPoints); _avg = cvMat(avg); _eval = cvMat(eval); _evec = cvMat(evec); prjTestPoints.create(rTestPoints.rows, maxComponents, rTestPoints.type() ); backPrjTestPoints.create(rPoints.size(), rPoints.type() ); _prjTestPoints = cvMat(prjTestPoints); _backPrjTestPoints = cvMat(backPrjTestPoints); cvCalcPCA( &_points, &_avg, &_eval, &_evec, CV_PCA_DATA_AS_ROW ); cvProjectPCA( &_testPoints, &_avg, &_evec, &_prjTestPoints ); cvBackProjectPCA( &_prjTestPoints, &_avg, &_evec, &_backPrjTestPoints ); err = cvtest::norm(prjTestPoints, rPrjTestPoints, NORM_L2 | NORM_RELATIVE); ASSERT_LE(err, diffPrjEps) << "bad accuracy of cvProjectPCA() (CV_PCA_DATA_AS_ROW)"; err = cvtest::norm(backPrjTestPoints, rBackPrjTestPoints, NORM_L2 | NORM_RELATIVE); ASSERT_LE(err, diffBackPrjEps) << "bad accuracy of cvBackProjectPCA() (CV_PCA_DATA_AS_ROW)"; // 5. check C PCA & COL _points = cvMat(cPoints); _testPoints = cvMat(cTestPoints); avg = avg.t(); _avg = cvMat(avg); eval = eval.t(); _eval = cvMat(eval); evec = evec.t(); _evec = cvMat(evec); prjTestPoints = prjTestPoints.t(); _prjTestPoints = cvMat(prjTestPoints); backPrjTestPoints = backPrjTestPoints.t(); _backPrjTestPoints = cvMat(backPrjTestPoints); cvCalcPCA( &_points, &_avg, &_eval, &_evec, CV_PCA_DATA_AS_COL ); cvProjectPCA( &_testPoints, &_avg, &_evec, &_prjTestPoints ); cvBackProjectPCA( &_prjTestPoints, &_avg, &_evec, &_backPrjTestPoints ); err = cvtest::norm(cv::abs(prjTestPoints), cv::abs(rPrjTestPoints.t()), NORM_L2 | NORM_RELATIVE); ASSERT_LE(err, diffPrjEps) << "bad accuracy of cvProjectPCA() (CV_PCA_DATA_AS_COL)"; err = cvtest::norm(backPrjTestPoints, rBackPrjTestPoints.t(), NORM_L2 | NORM_RELATIVE); ASSERT_LE(err, diffBackPrjEps) << "bad accuracy of cvBackProjectPCA() (CV_PCA_DATA_AS_COL)"; #endif // Test read and write FileStorage fs( "PCA_store.yml", FileStorage::WRITE ); rPCA.write( fs ); fs.release(); PCA lPCA; fs.open( "PCA_store.yml", FileStorage::READ ); lPCA.read( fs.root() ); err = cvtest::norm(rPCA.eigenvectors, lPCA.eigenvectors, NORM_L2 | NORM_RELATIVE); EXPECT_LE(err, 0) << "bad accuracy of write/load functions (YML)"; err = cvtest::norm(rPCA.eigenvalues, lPCA.eigenvalues, NORM_L2 | NORM_RELATIVE); EXPECT_LE(err, 0) << "bad accuracy of write/load functions (YML)"; err = cvtest::norm(rPCA.mean, lPCA.mean, NORM_L2 | NORM_RELATIVE); EXPECT_LE(err, 0) << "bad accuracy of write/load functions (YML)"; } class Core_ArrayOpTest : public cvtest::BaseTest { public: Core_ArrayOpTest(); ~Core_ArrayOpTest(); protected: void run(int); }; Core_ArrayOpTest::Core_ArrayOpTest() { } Core_ArrayOpTest::~Core_ArrayOpTest() {} static string idx2string(const int* idx, int dims) { char buf[256]; char* ptr = buf; for( int k = 0; k < dims; k++ ) { sprintf(ptr, "%4d ", idx[k]); ptr += strlen(ptr); } ptr[-1] = '\0'; return string(buf); } static const int* string2idx(const string& s, int* idx, int dims) { const char* ptr = s.c_str(); for( int k = 0; k < dims; k++ ) { int n = 0; sscanf(ptr, "%d%n", idx + k, &n); ptr += n; } return idx; } static double getValue(SparseMat& M, const int* idx, RNG& rng) { int d = M.dims(); size_t hv = 0, *phv = 0; if( (unsigned)rng % 2 ) { hv = d == 2 ? M.hash(idx[0], idx[1]) : d == 3 ? M.hash(idx[0], idx[1], idx[2]) : M.hash(idx); phv = &hv; } const uchar* ptr = d == 2 ? M.ptr(idx[0], idx[1], false, phv) : d == 3 ? M.ptr(idx[0], idx[1], idx[2], false, phv) : M.ptr(idx, false, phv); return !ptr ? 0 : M.type() == CV_32F ? *(float*)ptr : M.type() == CV_64F ? *(double*)ptr : 0; } static double getValue(const CvSparseMat* M, const int* idx) { int type = 0; const uchar* ptr = cvPtrND(M, idx, &type, 0); return !ptr ? 0 : type == CV_32F ? *(float*)ptr : type == CV_64F ? *(double*)ptr : 0; } static void eraseValue(SparseMat& M, const int* idx, RNG& rng) { int d = M.dims(); size_t hv = 0, *phv = 0; if( (unsigned)rng % 2 ) { hv = d == 2 ? M.hash(idx[0], idx[1]) : d == 3 ? M.hash(idx[0], idx[1], idx[2]) : M.hash(idx); phv = &hv; } if( d == 2 ) M.erase(idx[0], idx[1], phv); else if( d == 3 ) M.erase(idx[0], idx[1], idx[2], phv); else M.erase(idx, phv); } static void eraseValue(CvSparseMat* M, const int* idx) { cvClearND(M, idx); } static void setValue(SparseMat& M, const int* idx, double value, RNG& rng) { int d = M.dims(); size_t hv = 0, *phv = 0; if( (unsigned)rng % 2 ) { hv = d == 2 ? M.hash(idx[0], idx[1]) : d == 3 ? M.hash(idx[0], idx[1], idx[2]) : M.hash(idx); phv = &hv; } uchar* ptr = d == 2 ? M.ptr(idx[0], idx[1], true, phv) : d == 3 ? M.ptr(idx[0], idx[1], idx[2], true, phv) : M.ptr(idx, true, phv); if( M.type() == CV_32F ) *(float*)ptr = (float)value; else if( M.type() == CV_64F ) *(double*)ptr = value; else CV_Error(CV_StsUnsupportedFormat, ""); } template struct InitializerFunctor{ /// Initializer for cv::Mat::forEach test void operator()(Pixel & pixel, const int * idx) const { pixel.x = idx[0]; pixel.y = idx[1]; pixel.z = idx[2]; } }; template struct InitializerFunctor5D{ /// Initializer for cv::Mat::forEach test (5 dimensional case) void operator()(Pixel & pixel, const int * idx) const { pixel[0] = idx[0]; pixel[1] = idx[1]; pixel[2] = idx[2]; pixel[3] = idx[3]; pixel[4] = idx[4]; } }; template struct EmptyFunctor { void operator()(const Pixel &, const int *) const {} }; void Core_ArrayOpTest::run( int /* start_from */) { int errcount = 0; // dense matrix operations { int sz3[] = {5, 10, 15}; MatND A(3, sz3, CV_32F), B(3, sz3, CV_16SC4); CvMatND matA = cvMatND(A), matB = cvMatND(B); RNG rng; rng.fill(A, CV_RAND_UNI, Scalar::all(-10), Scalar::all(10)); rng.fill(B, CV_RAND_UNI, Scalar::all(-10), Scalar::all(10)); int idx0[] = {3,4,5}, idx1[] = {0, 9, 7}; float val0 = 130; Scalar val1(-1000, 30, 3, 8); cvSetRealND(&matA, idx0, val0); cvSetReal3D(&matA, idx1[0], idx1[1], idx1[2], -val0); cvSetND(&matB, idx0, cvScalar(val1)); cvSet3D(&matB, idx1[0], idx1[1], idx1[2], cvScalar(-val1)); Ptr matC(cvCloneMatND(&matB)); if( A.at(idx0[0], idx0[1], idx0[2]) != val0 || A.at(idx1[0], idx1[1], idx1[2]) != -val0 || cvGetReal3D(&matA, idx0[0], idx0[1], idx0[2]) != val0 || cvGetRealND(&matA, idx1) != -val0 || Scalar(B.at(idx0[0], idx0[1], idx0[2])) != val1 || Scalar(B.at(idx1[0], idx1[1], idx1[2])) != -val1 || Scalar(cvGet3D(matC, idx0[0], idx0[1], idx0[2])) != val1 || Scalar(cvGetND(matC, idx1)) != -val1 ) { ts->printf(cvtest::TS::LOG, "one of cvSetReal3D, cvSetRealND, cvSet3D, cvSetND " "or the corresponding *Get* functions is not correct\n"); errcount++; } } // test cv::Mat::forEach { const int dims[3] = { 101, 107, 7 }; typedef cv::Point3i Pixel; cv::Mat a = cv::Mat::zeros(3, dims, CV_32SC3); InitializerFunctor initializer; a.forEach(initializer); uint64 total = 0; bool error_reported = false; for (int i0 = 0; i0 < dims[0]; ++i0) { for (int i1 = 0; i1 < dims[1]; ++i1) { for (int i2 = 0; i2 < dims[2]; ++i2) { Pixel& pixel = a.at(i0, i1, i2); if (pixel.x != i0 || pixel.y != i1 || pixel.z != i2) { if (!error_reported) { ts->printf(cvtest::TS::LOG, "forEach is not correct.\n" "First error detected at (%d, %d, %d).\n", pixel.x, pixel.y, pixel.z); error_reported = true; } errcount++; } total += pixel.x; total += pixel.y; total += pixel.z; } } } uint64 total2 = 0; for (size_t i = 0; i < sizeof(dims) / sizeof(dims[0]); ++i) { total2 += ((dims[i] - 1) * dims[i] / 2) * dims[0] * dims[1] * dims[2] / dims[i]; } if (total != total2) { ts->printf(cvtest::TS::LOG, "forEach is not correct because total is invalid.\n"); errcount++; } } // test cv::Mat::forEach // with a matrix that has more dimensions than columns // See https://github.com/opencv/opencv/issues/8447 { const int dims[5] = { 2, 2, 2, 2, 2 }; typedef cv::Vec Pixel; cv::Mat a = cv::Mat::zeros(5, dims, CV_32SC(5)); InitializerFunctor5D initializer; a.forEach(initializer); uint64 total = 0; bool error_reported = false; for (int i0 = 0; i0 < dims[0]; ++i0) { for (int i1 = 0; i1 < dims[1]; ++i1) { for (int i2 = 0; i2 < dims[2]; ++i2) { for (int i3 = 0; i3 < dims[3]; ++i3) { for (int i4 = 0; i4 < dims[4]; ++i4) { const int i[5] = { i0, i1, i2, i3, i4 }; Pixel& pixel = a.at(i); if (pixel[0] != i0 || pixel[1] != i1 || pixel[2] != i2 || pixel[3] != i3 || pixel[4] != i4) { if (!error_reported) { ts->printf(cvtest::TS::LOG, "forEach is not correct.\n" "First error detected at position (%d, %d, %d, %d, %d), got value (%d, %d, %d, %d, %d).\n", i0, i1, i2, i3, i4, pixel[0], pixel[1], pixel[2], pixel[3], pixel[4]); error_reported = true; } errcount++; } total += pixel[0]; total += pixel[1]; total += pixel[2]; total += pixel[3]; total += pixel[4]; } } } } } uint64 total2 = 0; for (size_t i = 0; i < sizeof(dims) / sizeof(dims[0]); ++i) { total2 += ((dims[i] - 1) * dims[i] / 2) * dims[0] * dims[1] * dims[2] * dims[3] * dims[4] / dims[i]; } if (total != total2) { ts->printf(cvtest::TS::LOG, "forEach is not correct because total is invalid.\n"); errcount++; } } // test const cv::Mat::forEach { const Mat a(10, 10, CV_32SC3); Mat b(10, 10, CV_32SC3); const Mat & c = b; a.forEach(EmptyFunctor()); b.forEach(EmptyFunctor()); c.forEach(EmptyFunctor()); // tests compilation, no runtime check is needed } RNG rng; const int MAX_DIM = 5, MAX_DIM_SZ = 10; // sparse matrix operations for( int si = 0; si < 10; si++ ) { int depth = (unsigned)rng % 2 == 0 ? CV_32F : CV_64F; int dims = ((unsigned)rng % MAX_DIM) + 1; int i, k, size[MAX_DIM]={0}, idx[MAX_DIM]={0}; vector all_idxs; vector all_vals; vector all_vals2; string sidx, min_sidx, max_sidx; double min_val=0, max_val=0; int p = 1; for( k = 0; k < dims; k++ ) { size[k] = ((unsigned)rng % MAX_DIM_SZ) + 1; p *= size[k]; } SparseMat M( dims, size, depth ); map M0; int nz0 = (unsigned)rng % std::max(p/5,10); nz0 = std::min(std::max(nz0, 1), p); all_vals.resize(nz0); all_vals2.resize(nz0); Mat_ _all_vals(all_vals), _all_vals2(all_vals2); rng.fill(_all_vals, CV_RAND_UNI, Scalar(-1000), Scalar(1000)); if( depth == CV_32F ) { Mat _all_vals_f; _all_vals.convertTo(_all_vals_f, CV_32F); _all_vals_f.convertTo(_all_vals, CV_64F); } _all_vals.convertTo(_all_vals2, _all_vals2.type(), 2); if( depth == CV_32F ) { Mat _all_vals2_f; _all_vals2.convertTo(_all_vals2_f, CV_32F); _all_vals2_f.convertTo(_all_vals2, CV_64F); } minMaxLoc(_all_vals, &min_val, &max_val); double _norm0 = cv/*test*/::norm(_all_vals, CV_C); double _norm1 = cv/*test*/::norm(_all_vals, CV_L1); double _norm2 = cv/*test*/::norm(_all_vals, CV_L2); for( i = 0; i < nz0; i++ ) { for(;;) { for( k = 0; k < dims; k++ ) idx[k] = (unsigned)rng % size[k]; sidx = idx2string(idx, dims); if( M0.count(sidx) == 0 ) break; } all_idxs.push_back(sidx); M0[sidx] = all_vals[i]; if( all_vals[i] == min_val ) min_sidx = sidx; if( all_vals[i] == max_val ) max_sidx = sidx; setValue(M, idx, all_vals[i], rng); double v = getValue(M, idx, rng); if( v != all_vals[i] ) { ts->printf(cvtest::TS::LOG, "%d. immediately after SparseMat[%s]=%.20g the current value is %.20g\n", i, sidx.c_str(), all_vals[i], v); errcount++; break; } } Ptr M2(cvCreateSparseMat(M)); MatND Md; M.copyTo(Md); SparseMat M3; SparseMat(Md).convertTo(M3, Md.type(), 2); int nz1 = (int)M.nzcount(), nz2 = (int)M3.nzcount(); double norm0 = cv/*test*/::norm(M, CV_C); double norm1 = cv/*test*/::norm(M, CV_L1); double norm2 = cv/*test*/::norm(M, CV_L2); double eps = depth == CV_32F ? FLT_EPSILON*100 : DBL_EPSILON*1000; if( nz1 != nz0 || nz2 != nz0) { errcount++; ts->printf(cvtest::TS::LOG, "%d: The number of non-zero elements before/after converting to/from dense matrix is not correct: %d/%d (while it should be %d)\n", si, nz1, nz2, nz0 ); break; } if( fabs(norm0 - _norm0) > fabs(_norm0)*eps || fabs(norm1 - _norm1) > fabs(_norm1)*eps || fabs(norm2 - _norm2) > fabs(_norm2)*eps ) { errcount++; ts->printf(cvtest::TS::LOG, "%d: The norms are different: %.20g/%.20g/%.20g vs %.20g/%.20g/%.20g\n", si, norm0, norm1, norm2, _norm0, _norm1, _norm2 ); break; } int n = (unsigned)rng % std::max(p/5,10); n = std::min(std::max(n, 1), p) + nz0; for( i = 0; i < n; i++ ) { double val1, val2, val3, val0; if(i < nz0) { sidx = all_idxs[i]; string2idx(sidx, idx, dims); val0 = all_vals[i]; } else { for( k = 0; k < dims; k++ ) idx[k] = (unsigned)rng % size[k]; sidx = idx2string(idx, dims); val0 = M0[sidx]; } val1 = getValue(M, idx, rng); val2 = getValue(M2, idx); val3 = getValue(M3, idx, rng); if( val1 != val0 || val2 != val0 || fabs(val3 - val0*2) > fabs(val0*2)*FLT_EPSILON ) { errcount++; ts->printf(cvtest::TS::LOG, "SparseMat M[%s] = %g/%g/%g (while it should be %g)\n", sidx.c_str(), val1, val2, val3, val0 ); break; } } for( i = 0; i < n; i++ ) { double val1, val2; if(i < nz0) { sidx = all_idxs[i]; string2idx(sidx, idx, dims); } else { for( k = 0; k < dims; k++ ) idx[k] = (unsigned)rng % size[k]; sidx = idx2string(idx, dims); } eraseValue(M, idx, rng); eraseValue(M2, idx); val1 = getValue(M, idx, rng); val2 = getValue(M2, idx); if( val1 != 0 || val2 != 0 ) { errcount++; ts->printf(cvtest::TS::LOG, "SparseMat: after deleting M[%s], it is =%g/%g (while it should be 0)\n", sidx.c_str(), val1, val2 ); break; } } int nz = (int)M.nzcount(); if( nz != 0 ) { errcount++; ts->printf(cvtest::TS::LOG, "The number of non-zero elements after removing all the elements = %d (while it should be 0)\n", nz ); break; } int idx1[MAX_DIM], idx2[MAX_DIM]; double val1 = 0, val2 = 0; M3 = SparseMat(Md); cv::minMaxLoc(M3, &val1, &val2, idx1, idx2); string s1 = idx2string(idx1, dims), s2 = idx2string(idx2, dims); if( val1 != min_val || val2 != max_val || s1 != min_sidx || s2 != max_sidx ) { errcount++; ts->printf(cvtest::TS::LOG, "%d. Sparse: The value and positions of minimum/maximum elements are different from the reference values and positions:\n\t" "(%g, %g, %s, %s) vs (%g, %g, %s, %s)\n", si, val1, val2, s1.c_str(), s2.c_str(), min_val, max_val, min_sidx.c_str(), max_sidx.c_str()); break; } cv::minMaxIdx(Md, &val1, &val2, idx1, idx2); s1 = idx2string(idx1, dims), s2 = idx2string(idx2, dims); if( (min_val < 0 && (val1 != min_val || s1 != min_sidx)) || (max_val > 0 && (val2 != max_val || s2 != max_sidx)) ) { errcount++; ts->printf(cvtest::TS::LOG, "%d. Dense: The value and positions of minimum/maximum elements are different from the reference values and positions:\n\t" "(%g, %g, %s, %s) vs (%g, %g, %s, %s)\n", si, val1, val2, s1.c_str(), s2.c_str(), min_val, max_val, min_sidx.c_str(), max_sidx.c_str()); break; } } ts->set_failed_test_info(errcount == 0 ? cvtest::TS::OK : cvtest::TS::FAIL_INVALID_OUTPUT); } template int calcDiffElemCountImpl(const vector& mv, const Mat& m) { int diffElemCount = 0; const int mChannels = m.channels(); for(int y = 0; y < m.rows; y++) { for(int x = 0; x < m.cols; x++) { const T* mElem = &m.at(y, x*mChannels); size_t loc = 0; for(size_t i = 0; i < mv.size(); i++) { const size_t mvChannel = mv[i].channels(); const T* mvElem = &mv[i].at(y, x*(int)mvChannel); for(size_t li = 0; li < mvChannel; li++) if(mElem[loc + li] != mvElem[li]) diffElemCount++; loc += mvChannel; } CV_Assert(loc == (size_t)mChannels); } } return diffElemCount; } static int calcDiffElemCount(const vector& mv, const Mat& m) { int depth = m.depth(); switch (depth) { case CV_8U: return calcDiffElemCountImpl(mv, m); case CV_8S: return calcDiffElemCountImpl(mv, m); case CV_16U: return calcDiffElemCountImpl(mv, m); case CV_16S: return calcDiffElemCountImpl(mv, m); case CV_32S: return calcDiffElemCountImpl(mv, m); case CV_32F: return calcDiffElemCountImpl(mv, m); case CV_64F: return calcDiffElemCountImpl(mv, m); } return INT_MAX; } class Core_MergeSplitBaseTest : public cvtest::BaseTest { protected: virtual int run_case(int depth, size_t channels, const Size& size, RNG& rng) = 0; virtual void run(int) { // m is Mat // mv is vector const int minMSize = 1; const int maxMSize = 100; const size_t maxMvSize = 10; RNG& rng = theRNG(); Size mSize(rng.uniform(minMSize, maxMSize), rng.uniform(minMSize, maxMSize)); size_t mvSize = rng.uniform(1, maxMvSize); int res = cvtest::TS::OK; int curRes = run_case(CV_8U, mvSize, mSize, rng); res = curRes != cvtest::TS::OK ? curRes : res; curRes = run_case(CV_8S, mvSize, mSize, rng); res = curRes != cvtest::TS::OK ? curRes : res; curRes = run_case(CV_16U, mvSize, mSize, rng); res = curRes != cvtest::TS::OK ? curRes : res; curRes = run_case(CV_16S, mvSize, mSize, rng); res = curRes != cvtest::TS::OK ? curRes : res; curRes = run_case(CV_32S, mvSize, mSize, rng); res = curRes != cvtest::TS::OK ? curRes : res; curRes = run_case(CV_32F, mvSize, mSize, rng); res = curRes != cvtest::TS::OK ? curRes : res; curRes = run_case(CV_64F, mvSize, mSize, rng); res = curRes != cvtest::TS::OK ? curRes : res; ts->set_failed_test_info(res); } }; class Core_MergeTest : public Core_MergeSplitBaseTest { public: Core_MergeTest() {} ~Core_MergeTest() {} protected: virtual int run_case(int depth, size_t matCount, const Size& size, RNG& rng) { const int maxMatChannels = 10; vector src(matCount); int channels = 0; for(size_t i = 0; i < src.size(); i++) { Mat m(size, CV_MAKETYPE(depth, rng.uniform(1,maxMatChannels))); rng.fill(m, RNG::UNIFORM, 0, 100, true); channels += m.channels(); src[i] = m; } Mat dst; merge(src, dst); // check result std::stringstream commonLog; commonLog << "Depth " << depth << " :"; if(dst.depth() != depth) { ts->printf(cvtest::TS::LOG, "%s incorrect depth of dst (%d instead of %d)\n", commonLog.str().c_str(), dst.depth(), depth); return cvtest::TS::FAIL_INVALID_OUTPUT; } if(dst.size() != size) { ts->printf(cvtest::TS::LOG, "%s incorrect size of dst (%d x %d instead of %d x %d)\n", commonLog.str().c_str(), dst.rows, dst.cols, size.height, size.width); return cvtest::TS::FAIL_INVALID_OUTPUT; } if(dst.channels() != channels) { ts->printf(cvtest::TS::LOG, "%s: incorrect channels count of dst (%d instead of %d)\n", commonLog.str().c_str(), dst.channels(), channels); return cvtest::TS::FAIL_INVALID_OUTPUT; } int diffElemCount = calcDiffElemCount(src, dst); if(diffElemCount > 0) { ts->printf(cvtest::TS::LOG, "%s: there are incorrect elements in dst (part of them is %f)\n", commonLog.str().c_str(), static_cast(diffElemCount)/(channels*size.area())); return cvtest::TS::FAIL_INVALID_OUTPUT; } return cvtest::TS::OK; } }; class Core_SplitTest : public Core_MergeSplitBaseTest { public: Core_SplitTest() {} ~Core_SplitTest() {} protected: virtual int run_case(int depth, size_t channels, const Size& size, RNG& rng) { Mat src(size, CV_MAKETYPE(depth, (int)channels)); rng.fill(src, RNG::UNIFORM, 0, 100, true); vector dst; split(src, dst); // check result std::stringstream commonLog; commonLog << "Depth " << depth << " :"; if(dst.size() != channels) { ts->printf(cvtest::TS::LOG, "%s incorrect count of matrices in dst (%d instead of %d)\n", commonLog.str().c_str(), dst.size(), channels); return cvtest::TS::FAIL_INVALID_OUTPUT; } for(size_t i = 0; i < dst.size(); i++) { if(dst[i].size() != size) { ts->printf(cvtest::TS::LOG, "%s incorrect size of dst[%d] (%d x %d instead of %d x %d)\n", commonLog.str().c_str(), i, dst[i].rows, dst[i].cols, size.height, size.width); return cvtest::TS::FAIL_INVALID_OUTPUT; } if(dst[i].depth() != depth) { ts->printf(cvtest::TS::LOG, "%s: incorrect depth of dst[%d] (%d instead of %d)\n", commonLog.str().c_str(), i, dst[i].depth(), depth); return cvtest::TS::FAIL_INVALID_OUTPUT; } if(dst[i].channels() != 1) { ts->printf(cvtest::TS::LOG, "%s: incorrect channels count of dst[%d] (%d instead of %d)\n", commonLog.str().c_str(), i, dst[i].channels(), 1); return cvtest::TS::FAIL_INVALID_OUTPUT; } } int diffElemCount = calcDiffElemCount(dst, src); if(diffElemCount > 0) { ts->printf(cvtest::TS::LOG, "%s: there are incorrect elements in dst (part of them is %f)\n", commonLog.str().c_str(), static_cast(diffElemCount)/(channels*size.area())); return cvtest::TS::FAIL_INVALID_OUTPUT; } return cvtest::TS::OK; } }; TEST(Core_Reduce, accuracy) { Core_ReduceTest test; test.safe_run(); } TEST(Core_Array, basic_operations) { Core_ArrayOpTest test; test.safe_run(); } TEST(Core_Merge, shape_operations) { Core_MergeTest test; test.safe_run(); } TEST(Core_Split, shape_operations) { Core_SplitTest test; test.safe_run(); } TEST(Core_IOArray, submat_assignment) { Mat1f A = Mat1f::zeros(2,2); Mat1f B = Mat1f::ones(1,3); EXPECT_THROW( B.colRange(0,3).copyTo(A.row(0)), cv::Exception ); EXPECT_NO_THROW( B.colRange(0,2).copyTo(A.row(0)) ); EXPECT_EQ( 1.0f, A(0,0) ); EXPECT_EQ( 1.0f, A(0,1) ); } void OutputArray_create1(OutputArray m) { m.create(1, 2, CV_32S); } void OutputArray_create2(OutputArray m) { m.create(1, 3, CV_32F); } TEST(Core_IOArray, submat_create) { Mat1f A = Mat1f::zeros(2,2); EXPECT_THROW( OutputArray_create1(A.row(0)), cv::Exception ); EXPECT_THROW( OutputArray_create2(A.row(0)), cv::Exception ); } TEST(Core_Mat, issue4457_pass_null_ptr) { ASSERT_ANY_THROW(cv::Mat mask(45, 45, CV_32F, 0)); } TEST(Core_Mat, reshape_1942) { cv::Mat A = (cv::Mat_(2,3) << 3.4884074, 1.4159607, 0.78737736, 2.3456569, -0.88010466, 0.3009364); int cn = 0; ASSERT_NO_THROW( cv::Mat_ M = A.reshape(3); cn = M.channels(); ); ASSERT_EQ(1, cn); } static void check_ndim_shape(const cv::Mat &mat, int cn, int ndims, const int *sizes) { EXPECT_EQ(mat.channels(), cn); EXPECT_EQ(mat.dims, ndims); if (mat.dims != ndims) return; for (int i = 0; i < ndims; i++) EXPECT_EQ(mat.size[i], sizes[i]); } TEST(Core_Mat, reshape_ndims_2) { const cv::Mat A(8, 16, CV_8UC3); cv::Mat B; { int new_sizes_mask[] = { 0, 3, 4, 4 }; int new_sizes_real[] = { 8, 3, 4, 4 }; ASSERT_NO_THROW(B = A.reshape(1, 4, new_sizes_mask)); check_ndim_shape(B, 1, 4, new_sizes_real); } { int new_sizes[] = { 16, 8 }; ASSERT_NO_THROW(B = A.reshape(0, 2, new_sizes)); check_ndim_shape(B, 3, 2, new_sizes); EXPECT_EQ(B.rows, new_sizes[0]); EXPECT_EQ(B.cols, new_sizes[1]); } { int new_sizes[] = { 2, 5, 1, 3 }; cv::Mat A_sliced = A(cv::Range::all(), cv::Range(0, 15)); ASSERT_ANY_THROW(A_sliced.reshape(4, 4, new_sizes)); } } TEST(Core_Mat, reshape_ndims_4) { const int sizes[] = { 2, 6, 4, 12 }; const cv::Mat A(4, sizes, CV_8UC3); cv::Mat B; { int new_sizes_mask[] = { 0, 864 }; int new_sizes_real[] = { 2, 864 }; ASSERT_NO_THROW(B = A.reshape(1, 2, new_sizes_mask)); check_ndim_shape(B, 1, 2, new_sizes_real); EXPECT_EQ(B.rows, new_sizes_real[0]); EXPECT_EQ(B.cols, new_sizes_real[1]); } { int new_sizes_mask[] = { 4, 0, 0, 2, 3 }; int new_sizes_real[] = { 4, 6, 4, 2, 3 }; ASSERT_NO_THROW(B = A.reshape(0, 5, new_sizes_mask)); check_ndim_shape(B, 3, 5, new_sizes_real); } { int new_sizes_mask[] = { 1, 1 }; ASSERT_ANY_THROW(A.reshape(0, 2, new_sizes_mask)); } { int new_sizes_mask[] = { 4, 6, 3, 3, 0 }; ASSERT_ANY_THROW(A.reshape(0, 5, new_sizes_mask)); } } TEST(Core_Mat, push_back) { Mat a = (Mat_(1,2) << 3.4884074f, 1.4159607f); Mat b = (Mat_(1,2) << 0.78737736f, 2.3456569f); a.push_back(b); ASSERT_EQ(2, a.cols); ASSERT_EQ(2, a.rows); ASSERT_FLOAT_EQ(3.4884074f, a.at(0, 0)); ASSERT_FLOAT_EQ(1.4159607f, a.at(0, 1)); ASSERT_FLOAT_EQ(0.78737736f, a.at(1, 0)); ASSERT_FLOAT_EQ(2.3456569f, a.at(1, 1)); Mat c = (Mat_(2,2) << -0.88010466f, 0.3009364f, 2.22399974f, -5.45933905f); ASSERT_EQ(c.rows, a.cols); a.push_back(c.t()); ASSERT_EQ(2, a.cols); ASSERT_EQ(4, a.rows); ASSERT_FLOAT_EQ(3.4884074f, a.at(0, 0)); ASSERT_FLOAT_EQ(1.4159607f, a.at(0, 1)); ASSERT_FLOAT_EQ(0.78737736f, a.at(1, 0)); ASSERT_FLOAT_EQ(2.3456569f, a.at(1, 1)); ASSERT_FLOAT_EQ(-0.88010466f, a.at(2, 0)); ASSERT_FLOAT_EQ(2.22399974f, a.at(2, 1)); ASSERT_FLOAT_EQ(0.3009364f, a.at(3, 0)); ASSERT_FLOAT_EQ(-5.45933905f, a.at(3, 1)); a.push_back(Mat::ones(2, 2, CV_32FC1)); ASSERT_EQ(6, a.rows); for(int row=4; row(row, col)); } } } TEST(Core_Mat, copyNx1ToVector) { cv::Mat_ src(5, 1); cv::Mat_ ref_dst8; cv::Mat_ ref_dst16; std::vector dst8; std::vector dst16; src << 1, 2, 3, 4, 5; src.copyTo(ref_dst8); src.copyTo(dst8); ASSERT_PRED_FORMAT2(cvtest::MatComparator(0, 0), ref_dst8, cv::Mat_(dst8)); src.convertTo(ref_dst16, CV_16U); src.convertTo(dst16, CV_16U); ASSERT_PRED_FORMAT2(cvtest::MatComparator(0, 0), ref_dst16, cv::Mat_(dst16)); } TEST(Core_Matx, fromMat_) { Mat_ a = (Mat_(2,2) << 10, 11, 12, 13); Matx22d b(a); ASSERT_EQ( cvtest::norm(a, b, NORM_INF), 0.); } TEST(Core_Matx, from_initializer_list) { Mat_ a = (Mat_(2,2) << 10, 11, 12, 13); Matx22d b = {10, 11, 12, 13}; ASSERT_EQ( cvtest::norm(a, b, NORM_INF), 0.); } TEST(Core_Mat, regression_9507) { cv::Mat m = Mat::zeros(5, 5, CV_8UC3); cv::Mat m2{m}; EXPECT_EQ(25u, m2.total()); } TEST(Core_InputArray, empty) { vector > data; ASSERT_TRUE( _InputArray(data).empty() ); } TEST(Core_CopyMask, bug1918) { Mat_ tmpSrc(100,100); tmpSrc = 124; Mat_ tmpMask(100,100); tmpMask = 255; Mat_ tmpDst(100,100); tmpDst = 2; tmpSrc.copyTo(tmpDst,tmpMask); ASSERT_EQ(sum(tmpDst)[0], 124*100*100); } TEST(Core_SVD, orthogonality) { for( int i = 0; i < 2; i++ ) { int type = i == 0 ? CV_32F : CV_64F; Mat mat_D(2, 2, type); mat_D.setTo(88.); Mat mat_U, mat_W; SVD::compute(mat_D, mat_W, mat_U, noArray(), SVD::FULL_UV); mat_U *= mat_U.t(); ASSERT_LT(cvtest::norm(mat_U, Mat::eye(2, 2, type), NORM_INF), 1e-5); } } TEST(Core_SparseMat, footprint) { int n = 1000000; int sz[] = { n, n }; SparseMat m(2, sz, CV_64F); int nodeSize0 = (int)m.hdr->nodeSize; double dataSize0 = ((double)m.hdr->pool.size() + (double)m.hdr->hashtab.size()*sizeof(size_t))*1e-6; printf("before: node size=%d bytes, data size=%.0f Mbytes\n", nodeSize0, dataSize0); for (int i = 0; i < n; i++) { m.ref(i, i) = 1; } double dataSize1 = ((double)m.hdr->pool.size() + (double)m.hdr->hashtab.size()*sizeof(size_t))*1e-6; double threshold = (n*nodeSize0*1.6 + n*2.*sizeof(size_t))*1e-6; printf("after: data size=%.0f Mbytes, threshold=%.0f MBytes\n", dataSize1, threshold); ASSERT_LE((int)m.hdr->nodeSize, 32); ASSERT_LE(dataSize1, threshold); } // Can't fix without dirty hacks or broken user code (PR #4159) TEST(Core_Mat_vector, DISABLED_OutputArray_create_getMat) { cv::Mat_ src_base(5, 1); std::vector dst8; src_base << 1, 2, 3, 4, 5; Mat src(src_base); OutputArray _dst(dst8); { _dst.create(src.rows, src.cols, src.type()); Mat dst = _dst.getMat(); EXPECT_EQ(src.dims, dst.dims); EXPECT_EQ(src.cols, dst.cols); EXPECT_EQ(src.rows, dst.rows); } } TEST(Core_Mat_vector, copyTo_roi_column) { cv::Mat_ src_base(5, 2); std::vector dst1; src_base << 1, 2, 3, 4, 5, 6, 7, 8, 9, 10; Mat src_full(src_base); Mat src(src_full.col(0)); #if 0 // Can't fix without dirty hacks or broken user code (PR #4159) OutputArray _dst(dst1); { _dst.create(src.rows, src.cols, src.type()); Mat dst = _dst.getMat(); EXPECT_EQ(src.dims, dst.dims); EXPECT_EQ(src.cols, dst.cols); EXPECT_EQ(src.rows, dst.rows); } #endif std::vector dst2; src.copyTo(dst2); std::cout << "src = " << src << std::endl; std::cout << "dst = " << Mat(dst2) << std::endl; EXPECT_EQ((size_t)5, dst2.size()); EXPECT_EQ(1, (int)dst2[0]); EXPECT_EQ(3, (int)dst2[1]); EXPECT_EQ(5, (int)dst2[2]); EXPECT_EQ(7, (int)dst2[3]); EXPECT_EQ(9, (int)dst2[4]); } TEST(Core_Mat_vector, copyTo_roi_row) { cv::Mat_ src_base(2, 5); std::vector dst1; src_base << 1, 2, 3, 4, 5, 6, 7, 8, 9, 10; Mat src_full(src_base); Mat src(src_full.row(0)); OutputArray _dst(dst1); { _dst.create(src.rows, src.cols, src.type()); Mat dst = _dst.getMat(); EXPECT_EQ(src.dims, dst.dims); EXPECT_EQ(src.cols, dst.cols); EXPECT_EQ(src.rows, dst.rows); } std::vector dst2; src.copyTo(dst2); std::cout << "src = " << src << std::endl; std::cout << "dst = " << Mat(dst2) << std::endl; EXPECT_EQ((size_t)5, dst2.size()); EXPECT_EQ(1, (int)dst2[0]); EXPECT_EQ(2, (int)dst2[1]); EXPECT_EQ(3, (int)dst2[2]); EXPECT_EQ(4, (int)dst2[3]); EXPECT_EQ(5, (int)dst2[4]); } TEST(Mat, regression_5991) { int sz[] = {2,3,2}; Mat mat(3, sz, CV_32F, Scalar(1)); ASSERT_NO_THROW(mat.convertTo(mat, CV_8U)); EXPECT_EQ(sz[0], mat.size[0]); EXPECT_EQ(sz[1], mat.size[1]); EXPECT_EQ(sz[2], mat.size[2]); EXPECT_EQ(0, cvtest::norm(mat, Mat(3, sz, CV_8U, Scalar(1)), NORM_INF)); } TEST(Mat, regression_9720) { Mat mat(1, 1, CV_32FC1); mat.at(0) = 1.f; const float a = 0.1f; Mat me1 = (Mat)(mat.mul((a / mat))); Mat me2 = (Mat)(mat.mul((Mat)(a / mat))); Mat me3 = (Mat)(mat.mul((a * mat))); Mat me4 = (Mat)(mat.mul((Mat)(a * mat))); EXPECT_EQ(me1.at(0), me2.at(0)); EXPECT_EQ(me3.at(0), me4.at(0)); } #ifdef OPENCV_TEST_BIGDATA TEST(Mat, regression_6696_BigData_8Gb) { int width = 60000; int height = 10000; Mat destImageBGR = Mat(height, width, CV_8UC3, Scalar(1, 2, 3, 0)); Mat destImageA = Mat(height, width, CV_8UC1, Scalar::all(4)); vector planes; split(destImageBGR, planes); planes.push_back(destImageA); merge(planes, destImageBGR); EXPECT_EQ(1, destImageBGR.at(0)[0]); EXPECT_EQ(2, destImageBGR.at(0)[1]); EXPECT_EQ(3, destImageBGR.at(0)[2]); EXPECT_EQ(4, destImageBGR.at(0)[3]); EXPECT_EQ(1, destImageBGR.at(height-1, width-1)[0]); EXPECT_EQ(2, destImageBGR.at(height-1, width-1)[1]); EXPECT_EQ(3, destImageBGR.at(height-1, width-1)[2]); EXPECT_EQ(4, destImageBGR.at(height-1, width-1)[3]); } #endif TEST(Reduce, regression_should_fail_bug_4594) { cv::Mat src = cv::Mat::eye(4, 4, CV_8U); std::vector dst; EXPECT_THROW(cv::reduce(src, dst, 0, CV_REDUCE_MIN, CV_32S), cv::Exception); EXPECT_THROW(cv::reduce(src, dst, 0, CV_REDUCE_MAX, CV_32S), cv::Exception); EXPECT_NO_THROW(cv::reduce(src, dst, 0, CV_REDUCE_SUM, CV_32S)); EXPECT_NO_THROW(cv::reduce(src, dst, 0, CV_REDUCE_AVG, CV_32S)); } TEST(Mat, push_back_vector) { cv::Mat result(1, 5, CV_32FC1); std::vector vec1(result.cols + 1); std::vector vec2(result.cols); EXPECT_THROW(result.push_back(vec1), cv::Exception); EXPECT_THROW(result.push_back(vec2), cv::Exception); vec1.resize(result.cols); for (int i = 0; i < 5; ++i) result.push_back(cv::Mat(vec1).reshape(1, 1)); ASSERT_EQ(6, result.rows); } TEST(Mat, regression_5917_clone_empty) { Mat cloned; Mat_ source(5, 0); ASSERT_NO_THROW(cloned = source.clone()); } TEST(Mat, regression_7873_mat_vector_initialize) { std::vector dims; dims.push_back(12); dims.push_back(3); dims.push_back(2); Mat multi_mat(dims, CV_32FC1, cv::Scalar(0)); ASSERT_EQ(3, multi_mat.dims); ASSERT_EQ(12, multi_mat.size[0]); ASSERT_EQ(3, multi_mat.size[1]); ASSERT_EQ(2, multi_mat.size[2]); std::vector ranges; ranges.push_back(Range(1, 2)); ranges.push_back(Range::all()); ranges.push_back(Range::all()); Mat sub_mat = multi_mat(ranges); ASSERT_EQ(3, sub_mat.dims); ASSERT_EQ(1, sub_mat.size[0]); ASSERT_EQ(3, sub_mat.size[1]); ASSERT_EQ(2, sub_mat.size[2]); } TEST(Mat, regression_10507_mat_setTo) { Size sz(6, 4); Mat test_mask(sz, CV_8UC1, cv::Scalar::all(255)); test_mask.at(1,0) = 0; test_mask.at(0,1) = 0; for (int cn = 1; cn <= 4; cn++) { cv::Mat A(sz, CV_MAKE_TYPE(CV_32F, cn), cv::Scalar::all(5)); A.setTo(cv::Scalar::all(std::numeric_limits::quiet_NaN()), test_mask); int nans = 0; for (int y = 0; y < A.rows; y++) { for (int x = 0; x < A.cols; x++) { for (int c = 0; c < cn; c++) { float v = A.ptr(y, x)[c]; nans += (v == v) ? 0 : 1; } } } EXPECT_EQ(nans, cn * (sz.area() - 2)) << "A=" << A << std::endl << "mask=" << test_mask << std::endl; } } TEST(Core_Mat_array, outputArray_create_getMat) { cv::Mat_ src_base(5, 1); std::array dst8; src_base << 1, 2, 3, 4, 5; Mat src(src_base); OutputArray _dst(dst8); { _dst.create(src.rows, src.cols, src.type()); Mat dst = _dst.getMat(); EXPECT_EQ(src.dims, dst.dims); EXPECT_EQ(src.cols, dst.cols); EXPECT_EQ(src.rows, dst.rows); } } TEST(Core_Mat_array, copyTo_roi_column) { cv::Mat_ src_base(5, 2); src_base << 1, 2, 3, 4, 5, 6, 7, 8, 9, 10; Mat src_full(src_base); Mat src(src_full.col(0)); std::array dst1; src.copyTo(dst1); std::cout << "src = " << src << std::endl; std::cout << "dst = " << Mat(dst1) << std::endl; EXPECT_EQ((size_t)5, dst1.size()); EXPECT_EQ(1, (int)dst1[0]); EXPECT_EQ(3, (int)dst1[1]); EXPECT_EQ(5, (int)dst1[2]); EXPECT_EQ(7, (int)dst1[3]); EXPECT_EQ(9, (int)dst1[4]); } TEST(Core_Mat_array, copyTo_roi_row) { cv::Mat_ src_base(2, 5); std::array dst1; src_base << 1, 2, 3, 4, 5, 6, 7, 8, 9, 10; Mat src_full(src_base); Mat src(src_full.row(0)); OutputArray _dst(dst1); { _dst.create(5, 1, src.type()); Mat dst = _dst.getMat(); EXPECT_EQ(src.dims, dst.dims); EXPECT_EQ(1, dst.cols); EXPECT_EQ(5, dst.rows); } std::array dst2; src.copyTo(dst2); std::cout << "src = " << src << std::endl; std::cout << "dst = " << Mat(dst2) << std::endl; EXPECT_EQ(1, (int)dst2[0]); EXPECT_EQ(2, (int)dst2[1]); EXPECT_EQ(3, (int)dst2[2]); EXPECT_EQ(4, (int)dst2[3]); EXPECT_EQ(5, (int)dst2[4]); } TEST(Core_Mat_array, SplitMerge) { std::array src; for (size_t i = 0; i < src.size(); ++i) { src[i] = Mat(10, 10, CV_8U, Scalar((double)(16 * (i + 1)))); } Mat merged; merge(src, merged); std::array dst; split(merged, dst); for (size_t i = 0; i < dst.size(); ++i) { EXPECT_EQ(0, cvtest::norm(src[i], dst[i], NORM_INF)); } } TEST(Mat, regression_8680) { Mat_ mat(3,1); ASSERT_EQ(mat.channels(), 2); mat.release(); ASSERT_EQ(mat.channels(), 2); } TEST(Mat_, range_based_for) { Mat_ img = Mat_::zeros(3, 3); for(auto& pixel : img) { pixel = 1; } Mat_ ref(3, 3); ref.setTo(Scalar(1)); ASSERT_DOUBLE_EQ(cvtest::norm(img, ref, NORM_INF), 0.); } TEST(Mat, from_initializer_list) { Mat A({1.f, 2.f, 3.f}); Mat_ B(3, 1); B << 1, 2, 3; Mat_ C({3}, {1,2,3}); ASSERT_EQ(A.type(), CV_32F); ASSERT_DOUBLE_EQ(cvtest::norm(A, B, NORM_INF), 0.); ASSERT_DOUBLE_EQ(cvtest::norm(A, C, NORM_INF), 0.); ASSERT_DOUBLE_EQ(cvtest::norm(B, C, NORM_INF), 0.); auto D = Mat_({2, 3}, {1, 2, 3, 4, 5, 6}); EXPECT_EQ(2, D.rows); EXPECT_EQ(3, D.cols); } TEST(Mat_, from_initializer_list) { Mat_ A = {1, 2, 3}; Mat_ B(3, 1); B << 1, 2, 3; Mat_ C({3}, {1,2,3}); ASSERT_DOUBLE_EQ(cvtest::norm(A, B, NORM_INF), 0.); ASSERT_DOUBLE_EQ(cvtest::norm(A, C, NORM_INF), 0.); ASSERT_DOUBLE_EQ(cvtest::norm(B, C, NORM_INF), 0.); } TEST(Mat, template_based_ptr) { Mat mat = (Mat_(2, 2) << 11.0f, 22.0f, 33.0f, 44.0f); int idx[2] = {1, 0}; ASSERT_FLOAT_EQ(33.0f, *(mat.ptr(idx))); idx[0] = 1; idx[1] = 1; ASSERT_FLOAT_EQ(44.0f, *(mat.ptr(idx))); } TEST(Mat_, template_based_ptr) { int dim[4] = {2, 2, 1, 2}; Mat_ mat = (Mat_(4, dim) << 11.0f, 22.0f, 33.0f, 44.0f, 55.0f, 66.0f, 77.0f, 88.0f); int idx[4] = {1, 0, 0, 1}; ASSERT_FLOAT_EQ(66.0f, *(mat.ptr(idx))); } BIGDATA_TEST(Mat, push_back_regression_4158) // memory usage: ~10.6 Gb { Mat result; Mat tail(100, 500000, CV_32FC2, Scalar(1, 2)); tail.copyTo(result); for (int i = 1; i < 15; i++) { result.push_back(tail); std::cout << "i = " << i << " result = " << result.size() << " used = " << (uint64)result.total()*result.elemSize()*(1.0 / (1 << 20)) << " Mb" << " allocated=" << (uint64)(result.datalimit - result.datastart)*(1.0 / (1 << 20)) << " Mb" << std::endl; } for (int i = 0; i < 15; i++) { Rect roi(0, tail.rows * i, tail.cols, tail.rows); int nz = countNonZero(result(roi).reshape(1) == 2); EXPECT_EQ(tail.total(), (size_t)nz) << "i=" << i; } } TEST(Core_Merge, hang_12171) { Mat src1(4, 24, CV_8UC1, Scalar::all(1)); Mat src2(4, 24, CV_8UC1, Scalar::all(2)); Rect src_roi(0, 0, 23, 4); Mat src_channels[2] = { src1(src_roi), src2(src_roi) }; Mat dst(4, 24, CV_8UC2, Scalar::all(5)); Rect dst_roi(1, 0, 23, 4); cv::merge(src_channels, 2, dst(dst_roi)); EXPECT_EQ(5, dst.ptr()[0]); EXPECT_EQ(5, dst.ptr()[1]); EXPECT_EQ(1, dst.ptr()[2]); EXPECT_EQ(2, dst.ptr()[3]); EXPECT_EQ(5, dst.ptr(1)[0]); EXPECT_EQ(5, dst.ptr(1)[1]); EXPECT_EQ(1, dst.ptr(1)[2]); EXPECT_EQ(2, dst.ptr(1)[3]); } TEST(Core_Split, hang_12171) { Mat src(4, 24, CV_8UC2, Scalar(1,2,3,4)); Rect src_roi(0, 0, 23, 4); Mat dst1(4, 24, CV_8UC1, Scalar::all(5)); Mat dst2(4, 24, CV_8UC1, Scalar::all(10)); Rect dst_roi(0, 0, 23, 4); Mat dst[2] = { dst1(dst_roi), dst2(dst_roi) }; cv::split(src(src_roi), dst); EXPECT_EQ(1, dst1.ptr()[0]); EXPECT_EQ(1, dst1.ptr()[1]); EXPECT_EQ(2, dst2.ptr()[0]); EXPECT_EQ(2, dst2.ptr()[1]); EXPECT_EQ(1, dst1.ptr(1)[0]); EXPECT_EQ(1, dst1.ptr(1)[1]); EXPECT_EQ(2, dst2.ptr(1)[0]); EXPECT_EQ(2, dst2.ptr(1)[1]); } TEST(Core_Split, crash_12171) { Mat src(4, 40, CV_8UC2, Scalar(1,2,3,4)); Rect src_roi(0, 0, 39, 4); Mat dst1(4, 40, CV_8UC1, Scalar::all(5)); Mat dst2(4, 40, CV_8UC1, Scalar::all(10)); Rect dst_roi(0, 0, 39, 4); Mat dst[2] = { dst1(dst_roi), dst2(dst_roi) }; cv::split(src(src_roi), dst); EXPECT_EQ(1, dst1.ptr()[0]); EXPECT_EQ(1, dst1.ptr()[1]); EXPECT_EQ(2, dst2.ptr()[0]); EXPECT_EQ(2, dst2.ptr()[1]); EXPECT_EQ(1, dst1.ptr(1)[0]); EXPECT_EQ(1, dst1.ptr(1)[1]); EXPECT_EQ(2, dst2.ptr(1)[0]); EXPECT_EQ(2, dst2.ptr(1)[1]); } TEST(Core_Merge, bug_13544) { Mat src1(2, 2, CV_8UC3, Scalar::all(1)); Mat src2(2, 2, CV_8UC3, Scalar::all(2)); Mat src3(2, 2, CV_8UC3, Scalar::all(3)); Mat src_arr[] = { src1, src2, src3 }; Mat dst; merge(src_arr, 3, dst); ASSERT_EQ(9, dst.channels()); // Avoid memory access out of buffer EXPECT_EQ(3, (int)dst.ptr(0)[6]); EXPECT_EQ(3, (int)dst.ptr(0)[7]); EXPECT_EQ(3, (int)dst.ptr(0)[8]); EXPECT_EQ(1, (int)dst.ptr(1)[0]); EXPECT_EQ(1, (int)dst.ptr(1)[1]); EXPECT_EQ(1, (int)dst.ptr(1)[2]); EXPECT_EQ(2, (int)dst.ptr(1)[3]); EXPECT_EQ(2, (int)dst.ptr(1)[4]); EXPECT_EQ(2, (int)dst.ptr(1)[5]); EXPECT_EQ(3, (int)dst.ptr(1)[6]); EXPECT_EQ(3, (int)dst.ptr(1)[7]); EXPECT_EQ(3, (int)dst.ptr(1)[8]); } struct CustomType // like cv::Keypoint { Point2f pt; float size; float angle; float response; int octave; int class_id; }; static void test_CustomType(InputArray src_, OutputArray dst_) { Mat src = src_.getMat(); ASSERT_EQ(sizeof(CustomType), src.elemSize()); CV_CheckTypeEQ(src.type(), CV_MAKETYPE(CV_8U, sizeof(CustomType)), ""); CustomType* kpt = NULL; { Mat dst = dst_.getMat(); for (size_t i = 0; i < dst.total(); i++) { kpt = dst.ptr(0) + i; kpt->octave = (int)i; } } const int N = (int)src.total(); dst_.create(1, N * 2, rawType()); Mat dst = dst_.getMat(); for (size_t i = N; i < dst.total(); i++) { kpt = dst.ptr(0) + i; kpt->octave = -(int)i; } #if 0 // Compilation error CustomType& kpt = dst.at(0, 5); #endif } TEST(Core_InputArray, support_CustomType) { std::vector kp1(5); std::vector kp2(3); test_CustomType(rawIn(kp1), rawOut(kp2)); ASSERT_EQ((size_t)10, kp2.size()); for (int i = 0; i < 3; i++) { EXPECT_EQ(i, kp2[i].octave); } for (int i = 3; i < 5; i++) { EXPECT_EQ(0, kp2[i].octave); } for (int i = 5; i < 10; i++) { EXPECT_EQ(-i, kp2[i].octave); } } TEST(Core_InputArray, fetch_MatExpr) { Mat a(Size(10, 5), CV_32FC1, 5); Mat b(Size(10, 5), CV_32FC1, 2); MatExpr expr = a * b.t(); // gemm expression Mat dst; cv::add(expr, Scalar(1), dst); // invoke gemm() here void* expr_data = expr.a.data; Mat result = expr; // should not call gemm() here again EXPECT_EQ(expr_data, result.data); // expr data is reused EXPECT_EQ(dst.size(), result.size()); } #ifdef CV_CXX11 class TestInputArrayRangeChecking { static const char *kind2str(cv::_InputArray ia) { switch (ia.kind()) { #define C(x) case cv::_InputArray::x: return #x C(MAT); C(UMAT); C(EXPR); C(MATX); C(STD_VECTOR); C(NONE); C(STD_VECTOR_VECTOR); C(STD_BOOL_VECTOR); C(STD_VECTOR_MAT); C(STD_ARRAY_MAT); C(STD_VECTOR_UMAT); C(CUDA_GPU_MAT); C(STD_VECTOR_CUDA_GPU_MAT); #undef C default: return ""; } } static void banner(cv::_InputArray ia, const char *label, const char *name) { std::cout << std::endl << label << " = " << name << ", Kind: " << kind2str(ia) << std::endl; } template static void testA(I ia, F f, const char *mfname) { banner(ia, "f", mfname); EXPECT_THROW(f(ia, -1), cv::Exception) << "f(ia, " << -1 << ") should throw cv::Exception"; for (int i = 0; i < int(ia.size()); i++) { EXPECT_NO_THROW(f(ia, i)) << "f(ia, " << i << ") should not throw an exception"; } EXPECT_THROW(f(ia, int(ia.size())), cv::Exception) << "f(ia, " << ia.size() << ") should throw cv::Exception"; } template static void testB(I ia, F f, const char *mfname) { banner(ia, "f", mfname); EXPECT_THROW(f(ia, -1), cv::Exception) << "f(ia, " << -1 << ") should throw cv::Exception"; for (int i = 0; i < int(ia.size()); i++) { EXPECT_NO_THROW(f(ia, i)) << "f(ia, " << i << ") should not throw an exception"; } EXPECT_THROW(f(ia, int(ia.size())), cv::Exception) << "f(ia, " << ia.size() << ") should throw cv::Exception"; } static void test_isContinuous() { auto f = [](cv::_InputArray ia, int i) { (void)ia.isContinuous(i); }; cv::Mat M; cv::UMat uM; std::vector vec = {M, M}; std::array arr = {M, M}; std::vector uvec = {uM, uM}; testA(vec, f, "isContinuous"); testA(arr, f, "isContinuous"); testA(uvec, f, "isContinuous"); } static void test_isSubmatrix() { auto f = [](cv::_InputArray ia, int i) { (void)ia.isSubmatrix(i); }; cv::Mat M; cv::UMat uM; std::vector vec = {M, M}; std::array arr = {M, M}; std::vector uvec = {uM, uM}; testA(vec, f, "isSubmatrix"); testA(arr, f, "isSubmatrix"); testA(uvec, f, "isSubmatrix"); } static void test_offset() { auto f = [](cv::_InputArray ia, int i) { return ia.offset(i); }; cv::Mat M; cv::UMat uM; cv::cuda::GpuMat gM; std::vector vec = {M, M}; std::array arr = {M, M}; std::vector uvec = {uM, uM}; std::vector gvec = {gM, gM}; testB(vec, f, "offset"); testB(arr, f, "offset"); testB(uvec, f, "offset"); testB(gvec, f, "offset"); } static void test_step() { auto f = [](cv::_InputArray ia, int i) { return ia.step(i); }; cv::Mat M; cv::UMat uM; cv::cuda::GpuMat gM; std::vector vec = {M, M}; std::array arr = {M, M}; std::vector uvec = {uM, uM}; std::vector gvec = {gM, gM}; testB(vec, f, "step"); testB(arr, f, "step"); testB(uvec, f, "step"); testB(gvec, f, "step"); } public: static void run() { test_isContinuous(); test_isSubmatrix(); test_offset(); test_step(); } }; TEST(Core_InputArray, range_checking) { TestInputArrayRangeChecking::run(); } #endif TEST(Core_Vectors, issue_13078) { float floats_[] = { 1, 2, 3, 4, 5, 6, 7, 8 }; std::vector floats(floats_, floats_ + 8); std::vector ints(4); Mat m(4, 1, CV_32FC1, floats.data(), sizeof(floats[0]) * 2); m.convertTo(ints, CV_32S); ASSERT_EQ(1, ints[0]); ASSERT_EQ(3, ints[1]); ASSERT_EQ(5, ints[2]); ASSERT_EQ(7, ints[3]); } TEST(Core_Vectors, issue_13078_workaround) { float floats_[] = { 1, 2, 3, 4, 5, 6, 7, 8 }; std::vector floats(floats_, floats_ + 8); std::vector ints(4); Mat m(4, 1, CV_32FC1, floats.data(), sizeof(floats[0]) * 2); m.convertTo(Mat(ints), CV_32S); ASSERT_EQ(1, ints[0]); ASSERT_EQ(3, ints[1]); ASSERT_EQ(5, ints[2]); ASSERT_EQ(7, ints[3]); } TEST(Core_MatExpr, issue_13926) { Mat M1 = (Mat_(4,4,CV_64FC1) << 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16); Matx44d M2(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16); EXPECT_GE(1e-6, cvtest::norm(M1*M2, M1*M1, NORM_INF)) << Mat(M1*M2) << std::endl << Mat(M1*M1); EXPECT_GE(1e-6, cvtest::norm(M2*M1, M2*M2, NORM_INF)) << Mat(M2*M1) << std::endl << Mat(M2*M2); } TEST(Core_MatExpr, issue_16655) { Mat a(Size(5, 5), CV_32FC3, Scalar::all(1)); Mat b(Size(5, 5), CV_32FC3, Scalar::all(2)); MatExpr ab_expr = a != b; Mat ab_mat = ab_expr; EXPECT_EQ(CV_8UC3, ab_expr.type()) << "MatExpr: CV_8UC3 != " << typeToString(ab_expr.type()); EXPECT_EQ(CV_8UC3, ab_mat.type()) << "Mat: CV_8UC3 != " << typeToString(ab_mat.type()); } TEST(Core_MatExpr, issue_16689) { Mat a(Size(10, 5), CV_32FC1, 5); Mat b(Size(10, 5), CV_32FC1, 2); Mat bt(Size(5, 10), CV_32FC1, 3); { MatExpr r = a * bt; // gemm EXPECT_EQ(Mat(r).size(), r.size()) << "[10x5] x [5x10] => [5x5]"; } { MatExpr r = a * b.t(); // gemm EXPECT_EQ(Mat(r).size(), r.size()) << "[10x5] x [10x5].t() => [5x5]"; } { MatExpr r = a.t() * b; // gemm EXPECT_EQ(Mat(r).size(), r.size()) << "[10x5].t() x [10x5] => [10x10]"; } { MatExpr r = a.t() * bt.t(); // gemm EXPECT_EQ(Mat(r).size(), r.size()) << "[10x5].t() x [5x10].t() => [10x10]"; } } #ifdef HAVE_EIGEN TEST(Core_Eigen, eigen2cv_check_Mat_type) { Mat A(4, 4, CV_32FC1, Scalar::all(0)); Eigen::MatrixXf eigen_A; cv2eigen(A, eigen_A); Mat_ f_mat; EXPECT_NO_THROW(eigen2cv(eigen_A, f_mat)); EXPECT_EQ(CV_32FC1, f_mat.type()); Mat_ d_mat; EXPECT_ANY_THROW(eigen2cv(eigen_A, d_mat)); //EXPECT_EQ(CV_64FC1, d_mat.type()); } #endif // HAVE_EIGEN #ifdef OPENCV_EIGEN_TENSOR_SUPPORT TEST(Core_Eigen, cv2eigen_check_tensor_conversion) { Mat A(2, 3, CV_32FC3); float value = 0; for(int row=0; row(row,col)[ch] = value++; Eigen::Tensor row_tensor; cv2eigen(A, row_tensor); float* mat_ptr = (float*)A.data; float* tensor_ptr = row_tensor.data(); for (int i=0; i< row_tensor.size(); i++) ASSERT_FLOAT_EQ(mat_ptr[i], tensor_ptr[i]); Eigen::Tensor col_tensor; cv2eigen(A, col_tensor); value = 0; for(int row=0; row row_tensor(2,3,3); Eigen::Tensor col_tensor(2,3,3); float value = 0; for(int row=0; row(row,col)[ch]); } #endif // OPENCV_EIGEN_TENSOR_SUPPORT #ifdef OPENCV_EIGEN_TENSOR_SUPPORT TEST(Core_Eigen, cv2eigen_tensormap_check_tensormap_access) { float arr[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}; Mat a_mat(2, 2, CV_32FC3, arr); Eigen::TensorMap> a_tensor = cv2eigen_tensormap(a_mat); for(int i=0; i(i,j)[ch], a_tensor(i,j,ch)); ASSERT_EQ(&a_mat.at(i,j)[ch], &a_tensor(i,j,ch)); } } } } #endif // OPENCV_EIGEN_TENSOR_SUPPORT TEST(Mat, regression_12943) // memory usage: ~4.5 Gb { applyTestTag(CV_TEST_TAG_MEMORY_6GB); const int width = 0x8000; const int height = 0x10001; cv::Mat src(height, width, CV_8UC1, Scalar::all(128)); cv::Mat dst; cv::flip(src, dst, 0); } TEST(Mat, empty_iterator_16855) { cv::Mat m; EXPECT_NO_THROW(m.begin()); EXPECT_NO_THROW(m.end()); EXPECT_TRUE(m.begin() == m.end()); } TEST(Mat, regression_18473) { std::vector sizes(3); sizes[0] = 20; sizes[1] = 50; sizes[2] = 100; #if 1 // with the fix std::vector steps(2); steps[0] = 50*100*2; steps[1] = 100*2; #else // without the fix std::vector steps(3); steps[0] = 50*100*2; steps[1] = 100*2; steps[2] = 2; #endif std::vector data(20*50*100, 0); // 1Mb data[data.size() - 1] = 5; // param steps Array of ndims-1 steps Mat m(sizes, CV_16SC1, (void*)data.data(), (const size_t*)steps.data()); ASSERT_FALSE(m.empty()); EXPECT_EQ((int)5, (int)m.at(19, 49, 99)); } }} // namespace