// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. // // Copyright (C) 2017, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. #include "perf_precomp.hpp" #include "opencv2/core/ocl.hpp" #include "opencv2/dnn/shape_utils.hpp" #include "../test/test_common.hpp" namespace opencv_test { class DNNTestNetwork : public ::perf::TestBaseWithParam< tuple > { public: dnn::Backend backend; dnn::Target target; dnn::Net net; DNNTestNetwork() { backend = (dnn::Backend)(int)get<0>(GetParam()); target = (dnn::Target)(int)get<1>(GetParam()); } void processNet(std::string weights, std::string proto, const std::vector>& inputs, const std::string& outputLayer = ""){ weights = findDataFile(weights, false); if (!proto.empty()) proto = findDataFile(proto); net = readNet(proto, weights); // Set multiple inputs for(auto &inp: inputs){ net.setInput(std::get<0>(inp), std::get<1>(inp)); } net.setPreferableBackend(backend); net.setPreferableTarget(target); // Calculate multiple inputs memory consumption std::vector netMatShapes; for(auto &inp: inputs){ netMatShapes.push_back(shape(std::get<0>(inp))); } size_t weightsMemory = 0, blobsMemory = 0; net.getMemoryConsumption(netMatShapes, weightsMemory, blobsMemory); int64 flops = net.getFLOPS(netMatShapes); CV_Assert(flops > 0); net.forward(outputLayer); // warmup std::cout << "Memory consumption:" << std::endl; std::cout << " Weights(parameters): " << divUp(weightsMemory, 1u<<20) << " Mb" << std::endl; std::cout << " Blobs: " << divUp(blobsMemory, 1u<<20) << " Mb" << std::endl; std::cout << "Calculation complexity: " << flops * 1e-9 << " GFlops" << std::endl; PERF_SAMPLE_BEGIN() net.forward(); PERF_SAMPLE_END() SANITY_CHECK_NOTHING(); } void processNet(std::string weights, std::string proto, Mat &input, const std::string& outputLayer = "") { processNet(weights, proto, {std::make_tuple(input, "")}, outputLayer); } void processNet(std::string weights, std::string proto, Size inpSize, const std::string& outputLayer = "") { Mat input_data(inpSize, CV_32FC3); randu(input_data, 0.0f, 1.0f); Mat input = blobFromImage(input_data, 1.0, Size(), Scalar(), false); processNet(weights, proto, input, outputLayer); } }; PERF_TEST_P_(DNNTestNetwork, AlexNet) { processNet("dnn/bvlc_alexnet.caffemodel", "dnn/bvlc_alexnet.prototxt", cv::Size(227, 227)); } PERF_TEST_P_(DNNTestNetwork, GoogLeNet) { processNet("dnn/bvlc_googlenet.caffemodel", "dnn/bvlc_googlenet.prototxt", cv::Size(224, 224)); } PERF_TEST_P_(DNNTestNetwork, ResNet_50) { processNet("dnn/ResNet-50-model.caffemodel", "dnn/ResNet-50-deploy.prototxt", cv::Size(224, 224)); } PERF_TEST_P_(DNNTestNetwork, SqueezeNet_v1_1) { processNet("dnn/squeezenet_v1.1.caffemodel", "dnn/squeezenet_v1.1.prototxt", cv::Size(227, 227)); } PERF_TEST_P_(DNNTestNetwork, Inception_5h) { if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) throw SkipTestException(""); processNet("dnn/tensorflow_inception_graph.pb", "", cv::Size(224, 224), "softmax2"); } PERF_TEST_P_(DNNTestNetwork, SSD) { processNet("dnn/VGG_ILSVRC2016_SSD_300x300_iter_440000.caffemodel", "dnn/ssd_vgg16.prototxt", cv::Size(300, 300)); } PERF_TEST_P_(DNNTestNetwork, MobileNet_SSD_Caffe) { processNet("dnn/MobileNetSSD_deploy_19e3ec3.caffemodel", "dnn/MobileNetSSD_deploy_19e3ec3.prototxt", cv::Size(300, 300)); } PERF_TEST_P_(DNNTestNetwork, MobileNet_SSD_v1_TensorFlow) { processNet("dnn/ssd_mobilenet_v1_coco_2017_11_17.pb", "ssd_mobilenet_v1_coco_2017_11_17.pbtxt", cv::Size(300, 300)); } PERF_TEST_P_(DNNTestNetwork, MobileNet_SSD_v2_TensorFlow) { processNet("dnn/ssd_mobilenet_v2_coco_2018_03_29.pb", "ssd_mobilenet_v2_coco_2018_03_29.pbtxt", cv::Size(300, 300)); } PERF_TEST_P_(DNNTestNetwork, DenseNet_121) { processNet("dnn/DenseNet_121.caffemodel", "dnn/DenseNet_121.prototxt", cv::Size(224, 224)); } PERF_TEST_P_(DNNTestNetwork, OpenPose_pose_mpi_faster_4_stages) { if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && (target == DNN_TARGET_MYRIAD || target == DNN_TARGET_HDDL)) throw SkipTestException(""); // The same .caffemodel but modified .prototxt // See https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/pose/poseParameters.cpp processNet("dnn/openpose_pose_mpi.caffemodel", "dnn/openpose_pose_mpi_faster_4_stages.prototxt", cv::Size(368, 368)); } PERF_TEST_P_(DNNTestNetwork, opencv_face_detector) { processNet("dnn/opencv_face_detector.caffemodel", "dnn/opencv_face_detector.prototxt", cv::Size(300, 300)); } PERF_TEST_P_(DNNTestNetwork, Inception_v2_SSD_TensorFlow) { processNet("dnn/ssd_inception_v2_coco_2017_11_17.pb", "ssd_inception_v2_coco_2017_11_17.pbtxt", cv::Size(300, 300)); } PERF_TEST_P_(DNNTestNetwork, YOLOv3) { applyTestTag(CV_TEST_TAG_MEMORY_2GB); #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2020040000) // nGraph compilation failure if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL) throw SkipTestException("Test is disabled in OpenVINO 2020.4"); if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16) throw SkipTestException("Test is disabled in OpenVINO 2020.4"); #endif #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2021010000) // nGraph compilation failure if (target == DNN_TARGET_MYRIAD) throw SkipTestException(""); #endif Mat sample = imread(findDataFile("dnn/dog416.png")); Mat inp = blobFromImage(sample, 1.0 / 255.0, Size(), Scalar(), true); processNet("dnn/yolov3.weights", "dnn/yolov3.cfg", inp); } PERF_TEST_P_(DNNTestNetwork, YOLOv4) { applyTestTag(CV_TEST_TAG_MEMORY_2GB); if (target == DNN_TARGET_MYRIAD) // not enough resources throw SkipTestException(""); #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2020040000) // nGraph compilation failure if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL) throw SkipTestException("Test is disabled in OpenVINO 2020.4"); if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16) throw SkipTestException("Test is disabled in OpenVINO 2020.4"); #endif Mat sample = imread(findDataFile("dnn/dog416.png")); Mat inp = blobFromImage(sample, 1.0 / 255.0, Size(), Scalar(), true); processNet("dnn/yolov4.weights", "dnn/yolov4.cfg", inp); } PERF_TEST_P_(DNNTestNetwork, YOLOv4_tiny) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2021010000) // nGraph compilation failure if (target == DNN_TARGET_MYRIAD) throw SkipTestException(""); #endif Mat sample = imread(findDataFile("dnn/dog416.png")); Mat inp = blobFromImage(sample, 1.0 / 255.0, Size(), Scalar(), true); processNet("dnn/yolov4-tiny-2020-12.weights", "dnn/yolov4-tiny-2020-12.cfg", inp); } PERF_TEST_P_(DNNTestNetwork, YOLOv5) { applyTestTag(CV_TEST_TAG_MEMORY_512MB); Mat sample = imread(findDataFile("dnn/dog416.png")); Mat inp = blobFromImage(sample, 1.0 / 255.0, Size(640, 640), Scalar(), true); processNet("", "dnn/yolov5n.onnx", inp); } PERF_TEST_P_(DNNTestNetwork, YOLOv8) { applyTestTag(CV_TEST_TAG_MEMORY_512MB); Mat sample = imread(findDataFile("dnn/dog416.png")); Mat inp = blobFromImage(sample, 1.0 / 255.0, Size(640, 640), Scalar(), true); processNet("", "dnn/yolov8n.onnx", inp); } PERF_TEST_P_(DNNTestNetwork, YOLOX) { applyTestTag(CV_TEST_TAG_MEMORY_512MB); Mat sample = imread(findDataFile("dnn/dog416.png")); Mat inp = blobFromImage(sample, 1.0 / 255.0, Size(640, 640), Scalar(), true); processNet("", "dnn/yolox_s.onnx", inp); } PERF_TEST_P_(DNNTestNetwork, EAST_text_detection) { processNet("dnn/frozen_east_text_detection.pb", "", cv::Size(320, 320)); } PERF_TEST_P_(DNNTestNetwork, FastNeuralStyle_eccv16) { processNet("", "dnn/mosaic-9.onnx", cv::Size(224, 224)); } PERF_TEST_P_(DNNTestNetwork, Inception_v2_Faster_RCNN) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2019010000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) throw SkipTestException("Test is disabled in OpenVINO 2019R1"); #endif #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2019020000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) throw SkipTestException("Test is disabled in OpenVINO 2019R2"); #endif #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2021010000) if (target == DNN_TARGET_MYRIAD) throw SkipTestException("Test is disabled in OpenVINO 2021.1+ / MYRIAD"); #endif if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target != DNN_TARGET_CPU) || (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)) throw SkipTestException(""); processNet("dnn/faster_rcnn_inception_v2_coco_2018_01_28.pb", "dnn/faster_rcnn_inception_v2_coco_2018_01_28.pbtxt", cv::Size(800, 600)); } PERF_TEST_P_(DNNTestNetwork, EfficientDet) { if (target != DNN_TARGET_CPU) throw SkipTestException(""); Mat sample = imread(findDataFile("dnn/dog416.png")); Mat inp = blobFromImage(sample, 1.0 / 255.0, Size(512, 512), Scalar(), true); processNet("dnn/efficientdet-d0.pb", "dnn/efficientdet-d0.pbtxt", inp); } PERF_TEST_P_(DNNTestNetwork, EfficientNet) { Mat sample = imread(findDataFile("dnn/dog416.png")); Mat inp = blobFromImage(sample, 1.0 / 255.0, Size(224, 224), Scalar(), true); transposeND(inp, {0, 2, 3, 1}, inp); processNet("", "dnn/efficientnet-lite4.onnx", inp); } PERF_TEST_P_(DNNTestNetwork, YuNet) { processNet("", "dnn/onnx/models/yunet-202303.onnx", cv::Size(640, 640)); } PERF_TEST_P_(DNNTestNetwork, SFace) { processNet("", "dnn/face_recognition_sface_2021dec.onnx", cv::Size(112, 112)); } PERF_TEST_P_(DNNTestNetwork, MPPalm) { Mat inp(cv::Size(192, 192), CV_32FC3); randu(inp, 0.0f, 1.0f); inp = blobFromImage(inp, 1.0, Size(), Scalar(), false); transposeND(inp, {0, 2, 3, 1}, inp); processNet("", "dnn/palm_detection_mediapipe_2023feb.onnx", inp); } PERF_TEST_P_(DNNTestNetwork, MPHand) { Mat inp(cv::Size(224, 224), CV_32FC3); randu(inp, 0.0f, 1.0f); inp = blobFromImage(inp, 1.0, Size(), Scalar(), false); transposeND(inp, {0, 2, 3, 1}, inp); processNet("", "dnn/handpose_estimation_mediapipe_2023feb.onnx", inp); } PERF_TEST_P_(DNNTestNetwork, MPPose) { Mat inp(cv::Size(256, 256), CV_32FC3); randu(inp, 0.0f, 1.0f); inp = blobFromImage(inp, 1.0, Size(), Scalar(), false); transposeND(inp, {0, 2, 3, 1}, inp); processNet("", "dnn/pose_estimation_mediapipe_2023mar.onnx", inp); } PERF_TEST_P_(DNNTestNetwork, PPOCRv3) { applyTestTag(CV_TEST_TAG_MEMORY_512MB); processNet("", "dnn/onnx/models/PP_OCRv3_DB_text_det.onnx", cv::Size(736, 736)); } PERF_TEST_P_(DNNTestNetwork, PPHumanSeg) { processNet("", "dnn/human_segmentation_pphumanseg_2023mar.onnx", cv::Size(192, 192)); } PERF_TEST_P_(DNNTestNetwork, CRNN) { Mat inp(cv::Size(100, 32), CV_32FC1); randu(inp, 0.0f, 1.0f); inp = blobFromImage(inp, 1.0, Size(), Scalar(), false); processNet("", "dnn/text_recognition_CRNN_EN_2021sep.onnx", inp); } PERF_TEST_P_(DNNTestNetwork, ViTTrack) { Mat inp1(cv::Size(128, 128), CV_32FC3); Mat inp2(cv::Size(256, 256), CV_32FC3); randu(inp1, 0.0f, 1.0f); randu(inp2, 0.0f, 1.0f); inp1 = blobFromImage(inp1, 1.0, Size(), Scalar(), false); inp2 = blobFromImage(inp2, 1.0, Size(), Scalar(), false); processNet("", "dnn/onnx/models/vitTracker.onnx", {std::make_tuple(inp1, "template"), std::make_tuple(inp2, "search")}); } PERF_TEST_P_(DNNTestNetwork, EfficientDet_int8) { if (target != DNN_TARGET_CPU || (backend != DNN_BACKEND_OPENCV && backend != DNN_BACKEND_TIMVX && backend != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)) { throw SkipTestException(""); } Mat inp = imread(findDataFile("dnn/dog416.png")); inp = blobFromImage(inp, 1.0 / 255.0, Size(320, 320), Scalar(), true); processNet("", "dnn/tflite/coco_efficientdet_lite0_v1_1.0_quant_2021_09_06.tflite", inp); } INSTANTIATE_TEST_CASE_P(/*nothing*/, DNNTestNetwork, dnnBackendsAndTargets()); } // namespace