// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. // // Copyright (C) 2018 Intel Corporation #include "test_precomp.hpp" #include #include #include "logger.hpp" #include #include "executor/thread_pool.hpp" namespace opencv_test { namespace { G_TYPED_KERNEL(GInvalidResize, , "org.opencv.test.invalid_resize") { static GMatDesc outMeta(GMatDesc in, Size, double, double, int) { return in; } }; GAPI_OCV_KERNEL(GOCVInvalidResize, GInvalidResize) { static void run(const cv::Mat& in, cv::Size sz, double fx, double fy, int interp, cv::Mat &out) { cv::resize(in, out, sz, fx, fy, interp); } }; G_TYPED_KERNEL(GReallocatingCopy, , "org.opencv.test.reallocating_copy") { static GMatDesc outMeta(GMatDesc in) { return in; } }; GAPI_OCV_KERNEL(GOCVReallocatingCopy, GReallocatingCopy) { static void run(const cv::Mat& in, cv::Mat &out) { out = in.clone(); } }; G_TYPED_KERNEL(GCustom, , "org.opencv.test.custom") { static GMatDesc outMeta(GMatDesc in) { return in; } }; G_TYPED_KERNEL(GZeros, , "org.opencv.test.zeros") { static GMatDesc outMeta(GMatDesc /*in*/, GMatDesc user_desc) { return user_desc; } }; GAPI_OCV_KERNEL(GOCVZeros, GZeros) { static void run(const cv::Mat& /*in*/, const cv::GMatDesc& /*desc*/, cv::Mat& out) { out.setTo(0); } }; G_TYPED_KERNEL(GBusyWait, , "org.busy_wait") { static GMatDesc outMeta(GMatDesc in, uint32_t) { return in; } }; GAPI_OCV_KERNEL(GOCVBusyWait, GBusyWait) { static void run(const cv::Mat& in, const uint32_t time_in_ms, cv::Mat& out) { using namespace std::chrono; auto s = high_resolution_clock::now(); in.copyTo(out); auto e = high_resolution_clock::now(); const auto elapsed_in_ms = static_cast(duration_cast(e-s).count()); int32_t diff = time_in_ms - elapsed_in_ms; const auto need_to_wait_in_ms = static_cast(std::max(0, diff)); s = high_resolution_clock::now(); e = s; while (duration_cast(e-s).count() < need_to_wait_in_ms) { e = high_resolution_clock::now(); } } }; // These definitions test the correct macro work if the kernel has multiple output values G_TYPED_KERNEL(GRetGArrayTupleOfGMat2Kernel, >(GMat, Scalar)>, "org.opencv.test.retarrayoftupleofgmat2kernel") {}; G_TYPED_KERNEL(GRetGArraTupleyOfGMat3Kernel, >(GMat)>, "org.opencv.test.retarrayoftupleofgmat3kernel") {}; G_TYPED_KERNEL(GRetGArraTupleyOfGMat4Kernel, >(GMat)>, "org.opencv.test.retarrayoftupleofgmat4kernel") {}; G_TYPED_KERNEL(GRetGArraTupleyOfGMat5Kernel, >(GMat)>, "org.opencv.test.retarrayoftupleofgmat5kernel") {}; G_TYPED_KERNEL(GRetGArraTupleyOfGMat6Kernel, >(GMat)>, "org.opencv.test.retarrayoftupleofgmat6kernel") {}; G_TYPED_KERNEL(GRetGArraTupleyOfGMat7Kernel, >(GMat)>, "org.opencv.test.retarrayoftupleofgmat7kernel") {}; G_TYPED_KERNEL(GRetGArraTupleyOfGMat8Kernel, >(GMat)>, "org.opencv.test.retarrayoftupleofgmat8kernel") {}; G_TYPED_KERNEL(GRetGArraTupleyOfGMat9Kernel, >(GMat)>, "org.opencv.test.retarrayoftupleofgmat9kernel") {}; G_TYPED_KERNEL(GRetGArraTupleyOfGMat10Kernel, >(GMat)>, "org.opencv.test.retarrayoftupleofgmat10kernel") {}; G_TYPED_KERNEL_M(GRetGMat2Kernel, (GMat, GMat, GMat)>, "org.opencv.test.retgmat2kernel") {}; G_TYPED_KERNEL_M(GRetGMat3Kernel, (GMat, GScalar)>, "org.opencv.test.retgmat3kernel") {}; G_TYPED_KERNEL_M(GRetGMat4Kernel, (GMat, GArray, GScalar)>, "org.opencv.test.retgmat4kernel") {}; G_TYPED_KERNEL_M(GRetGMat5Kernel, (GMat)>, "org.opencv.test.retgmat5kernel") {}; G_TYPED_KERNEL_M(GRetGMat6Kernel, (GMat)>, "org.opencv.test.retgmat6kernel") {}; G_TYPED_KERNEL_M(GRetGMat7Kernel, (GMat)>, "org.opencv.test.retgmat7kernel") {}; G_TYPED_KERNEL_M(GRetGMat8Kernel, (GMat)>, "org.opencv.test.retgmat8kernel") {}; G_TYPED_KERNEL_M(GRetGMat9Kernel, (GMat)>, "org.opencv.test.retgmat9kernel") {}; G_TYPED_KERNEL_M(GRetGMat10Kernel, (GMat)>, "org.opencv.test.retgmat10kernel") {}; } TEST(GAPI_Pipeline, OverloadUnary_MatMat) { cv::GMat in; cv::GComputation comp(in, cv::gapi::bitwise_not(in)); cv::Mat in_mat = cv::Mat::eye(32, 32, CV_8UC1); cv::Mat ref_mat = ~in_mat; cv::Mat out_mat; comp.apply(in_mat, out_mat); EXPECT_EQ(0, cvtest::norm(out_mat, ref_mat, NORM_INF)); out_mat = cv::Mat(); auto cc = comp.compile(cv::descr_of(in_mat)); cc(in_mat, out_mat); EXPECT_EQ(0, cvtest::norm(out_mat, ref_mat, NORM_INF)); } TEST(GAPI_Pipeline, OverloadUnary_MatScalar) { cv::GMat in; cv::GComputation comp(in, cv::gapi::sum(in)); cv::Mat in_mat = cv::Mat::eye(32, 32, CV_8UC1); cv::Scalar ref_scl = cv::sum(in_mat); cv::Scalar out_scl; comp.apply(in_mat, out_scl); EXPECT_EQ(out_scl, ref_scl); out_scl = cv::Scalar(); auto cc = comp.compile(cv::descr_of(in_mat)); cc(in_mat, out_scl); EXPECT_EQ(out_scl, ref_scl); } TEST(GAPI_Pipeline, OverloadBinary_Mat) { cv::GMat a, b; cv::GComputation comp(a, b, cv::gapi::add(a, b)); cv::Mat in_mat = cv::Mat::eye(32, 32, CV_8UC1); cv::Mat ref_mat = (in_mat+in_mat); cv::Mat out_mat; comp.apply(in_mat, in_mat, out_mat); EXPECT_EQ(0, cvtest::norm(out_mat, ref_mat, NORM_INF)); out_mat = cv::Mat(); auto cc = comp.compile(cv::descr_of(in_mat), cv::descr_of(in_mat)); cc(in_mat, in_mat, out_mat); EXPECT_EQ(0, cvtest::norm(out_mat, ref_mat, NORM_INF)); } TEST(GAPI_Pipeline, OverloadBinary_Scalar) { cv::GMat a, b; cv::GComputation comp(a, b, cv::gapi::sum(a + b)); cv::Mat in_mat = cv::Mat::eye(32, 32, CV_8UC1); cv::Scalar ref_scl = cv::sum(in_mat+in_mat); cv::Scalar out_scl; comp.apply(in_mat, in_mat, out_scl); EXPECT_EQ(out_scl, ref_scl); out_scl = cv::Scalar(); auto cc = comp.compile(cv::descr_of(in_mat), cv::descr_of(in_mat)); cc(in_mat, in_mat, out_scl); EXPECT_EQ(out_scl, ref_scl); } TEST(GAPI_Pipeline, Sharpen) { const cv::Size sz_in (1280, 720); const cv::Size sz_out( 640, 480); cv::Mat in_mat (sz_in, CV_8UC3); in_mat = cv::Scalar(128, 33, 53); cv::Mat out_mat(sz_out, CV_8UC3); cv::Mat out_mat_y; cv::Mat out_mat_ocv(sz_out, CV_8UC3); float sharpen_coeffs[] = { 0.0f, -1.f, 0.0f, -1.0f, 5.f, -1.0f, 0.0f, -1.f, 0.0f }; cv::Mat sharpen_kernel(3, 3, CV_32F, sharpen_coeffs); // G-API code ////////////////////////////////////////////////////////////// cv::GMat in; auto vga = cv::gapi::resize(in, sz_out); auto yuv = cv::gapi::RGB2YUV(vga); auto yuv_p = cv::gapi::split3(yuv); auto y_sharp = cv::gapi::filter2D(std::get<0>(yuv_p), -1, sharpen_kernel); auto yuv_new = cv::gapi::merge3(y_sharp, std::get<1>(yuv_p), std::get<2>(yuv_p)); auto out = cv::gapi::YUV2RGB(yuv_new); cv::GComputation c(cv::GIn(in), cv::GOut(y_sharp, out)); c.apply(cv::gin(in_mat), cv::gout(out_mat_y, out_mat)); // OpenCV code ///////////////////////////////////////////////////////////// { cv::Mat smaller; cv::resize(in_mat, smaller, sz_out); cv::Mat yuv_mat; cv::cvtColor(smaller, yuv_mat, cv::COLOR_RGB2YUV); std::vector yuv_planar(3); cv::split(yuv_mat, yuv_planar); cv::filter2D(yuv_planar[0], yuv_planar[0], -1, sharpen_kernel); cv::merge(yuv_planar, yuv_mat); cv::cvtColor(yuv_mat, out_mat_ocv, cv::COLOR_YUV2RGB); } // Comparison ////////////////////////////////////////////////////////////// { cv::Mat diff = out_mat_ocv != out_mat; std::vector diffBGR(3); cv::split(diff, diffBGR); EXPECT_EQ(0, cvtest::norm(diffBGR[0], NORM_INF)); EXPECT_EQ(0, cvtest::norm(diffBGR[1], NORM_INF)); EXPECT_EQ(0, cvtest::norm(diffBGR[2], NORM_INF)); } // Metadata check ///////////////////////////////////////////////////////// { auto cc = c.compile(cv::descr_of(in_mat)); auto metas = cc.outMetas(); ASSERT_EQ(2u, metas.size()); auto out_y_meta = cv::util::get(metas[0]); auto out_meta = cv::util::get(metas[1]); // Y-output EXPECT_EQ(CV_8U, out_y_meta.depth); EXPECT_EQ(1, out_y_meta.chan); EXPECT_EQ(640, out_y_meta.size.width); EXPECT_EQ(480, out_y_meta.size.height); // Final output EXPECT_EQ(CV_8U, out_meta.depth); EXPECT_EQ(3, out_meta.chan); EXPECT_EQ(640, out_meta.size.width); EXPECT_EQ(480, out_meta.size.height); } } TEST(GAPI_Pipeline, CustomRGB2YUV) { const cv::Size sz(1280, 720); // BEWARE: // // std::vector out_mats_cv(3, cv::Mat(sz, CV_8U)) // // creates a vector of 3 elements pointing to the same Mat! // FIXME: Make a G-API check for that const int INS = 3; std::vector in_mats(INS); for (auto i : ade::util::iota(INS)) { in_mats[i].create(sz, CV_8U); cv::randu(in_mats[i], cv::Scalar::all(0), cv::Scalar::all(255)); } const int OUTS = 3; std::vector out_mats_cv(OUTS); std::vector out_mats_gapi(OUTS); for (auto i : ade::util::iota(OUTS)) { out_mats_cv [i].create(sz, CV_8U); out_mats_gapi[i].create(sz, CV_8U); } // G-API code ////////////////////////////////////////////////////////////// { cv::GMat r, g, b; cv::GMat y = 0.299f*r + 0.587f*g + 0.114f*b; cv::GMat u = 0.492f*(b - y); cv::GMat v = 0.877f*(r - y); cv::GComputation customCvt({r, g, b}, {y, u, v}); customCvt.apply(in_mats, out_mats_gapi); } // OpenCV code ///////////////////////////////////////////////////////////// { cv::Mat r = in_mats[0], g = in_mats[1], b = in_mats[2]; cv::Mat y = 0.299f*r + 0.587f*g + 0.114f*b; cv::Mat u = 0.492f*(b - y); cv::Mat v = 0.877f*(r - y); out_mats_cv[0] = y; out_mats_cv[1] = u; out_mats_cv[2] = v; } // Comparison ////////////////////////////////////////////////////////////// { const auto diff = [](cv::Mat m1, cv::Mat m2, int t) { return cv::abs(m1-m2) > t; }; // FIXME: Not bit-accurate even now! cv::Mat diff_y = diff(out_mats_cv[0], out_mats_gapi[0], 2), diff_u = diff(out_mats_cv[1], out_mats_gapi[1], 2), diff_v = diff(out_mats_cv[2], out_mats_gapi[2], 2); EXPECT_EQ(0, cvtest::norm(diff_y, NORM_INF)); EXPECT_EQ(0, cvtest::norm(diff_u, NORM_INF)); EXPECT_EQ(0, cvtest::norm(diff_v, NORM_INF)); } } TEST(GAPI_Pipeline, PipelineWithInvalidKernel) { cv::GMat in, out; cv::Mat in_mat(500, 500, CV_8UC1), out_mat; out = GInvalidResize::on(in, cv::Size(300, 300), 0.0, 0.0, cv::INTER_LINEAR); const auto pkg = cv::gapi::kernels(); cv::GComputation comp(cv::GIn(in), cv::GOut(out)); EXPECT_THROW(comp.apply(in_mat, out_mat, cv::compile_args(pkg)), std::logic_error); } TEST(GAPI_Pipeline, InvalidOutputComputation) { cv::GMat in1, out1, out2, out3; std::tie(out1, out2, out2) = cv::gapi::split3(in1); cv::GComputation c({in1}, {out1, out2, out3}); cv::Mat in_mat; cv::Mat out_mat1, out_mat2, out_mat3, out_mat4; std::vector u_outs = {out_mat1, out_mat2, out_mat3, out_mat4}; std::vector u_ins = {in_mat}; EXPECT_THROW(c.apply(u_ins, u_outs), std::logic_error); } TEST(GAPI_Pipeline, PipelineAllocatingKernel) { cv::GMat in, out; cv::Mat in_mat(500, 500, CV_8UC1), out_mat; out = GReallocatingCopy::on(in); const auto pkg = cv::gapi::kernels(); cv::GComputation comp(cv::GIn(in), cv::GOut(out)); EXPECT_THROW(comp.apply(in_mat, out_mat, cv::compile_args(pkg)), std::logic_error); } TEST(GAPI_Pipeline, CreateKernelImplFromLambda) { cv::Size size(300, 300); int type = CV_8UC3; cv::Mat in_mat(size, type); cv::randu(in_mat, cv::Scalar::all(0), cv::Scalar::all(255)); int value = 5; cv::GMat in; cv::GMat out = GCustom::on(in); cv::GComputation comp(in, out); // OpenCV ////////////////////////////////////////////////////////////////////////// auto ref_mat = in_mat + value; // G-API ////////////////////////////////////////////////////////////////////////// auto impl = cv::gapi::cpu::ocv_kernel([&value](const cv::Mat& src, cv::Mat& dst) { dst = src + value; }); cv::Mat out_mat; auto pkg = cv::gapi::kernels(impl); comp.apply(in_mat, out_mat, cv::compile_args(pkg)); EXPECT_EQ(0, cv::norm(out_mat, ref_mat)); } TEST(GAPI_Pipeline, ReplaceDefaultByLambda) { cv::Size size(300, 300); int type = CV_8UC3; cv::Mat in_mat1(size, type); cv::Mat in_mat2(size, type); cv::randu(in_mat2, cv::Scalar::all(0), cv::Scalar::all(255)); cv::randu(in_mat1, cv::Scalar::all(0), cv::Scalar::all(255)); cv::GMat in1, in2; cv::GMat out = cv::gapi::add(in1, in2); cv::GComputation comp(cv::GIn(in1, in2), cv::GOut(out)); // OpenCV ////////////////////////////////////////////////////////////////////////// cv::Mat ref_mat = in_mat1 + in_mat2; // G-API ////////////////////////////////////////////////////////////////////////// bool is_called = false; auto impl = cv::gapi::cpu::ocv_kernel([&is_called] (const cv::Mat& src1, const cv::Mat& src2, int, cv::Mat& dst) { is_called = true; dst = src1 + src2; }); cv::Mat out_mat; auto pkg = cv::gapi::kernels(impl); comp.apply(cv::gin(in_mat1, in_mat2), cv::gout(out_mat), cv::compile_args(pkg)); EXPECT_EQ(0, cv::norm(out_mat, ref_mat)); EXPECT_TRUE(is_called); } struct AddImpl { void operator()(const cv::Mat& in1, const cv::Mat& in2, int, cv::Mat& out) { out = in1 + in2; is_called = true; } bool is_called = false; }; TEST(GAPI_Pipeline, ReplaceDefaultByFunctor) { cv::Size size(300, 300); int type = CV_8UC3; cv::Mat in_mat1(size, type); cv::Mat in_mat2(size, type); cv::randu(in_mat2, cv::Scalar::all(0), cv::Scalar::all(255)); cv::randu(in_mat1, cv::Scalar::all(0), cv::Scalar::all(255)); cv::GMat in1, in2; cv::GMat out = cv::gapi::add(in1, in2); cv::GComputation comp(cv::GIn(in1, in2), cv::GOut(out)); // OpenCV ////////////////////////////////////////////////////////////////////////// cv::Mat ref_mat = in_mat1 + in_mat2; // G-API /////////////////////////////////////////////////////////////////////////// AddImpl f; EXPECT_FALSE(f.is_called); auto impl = cv::gapi::cpu::ocv_kernel(f); cv::Mat out_mat; auto pkg = cv::gapi::kernels(impl); comp.apply(cv::gin(in_mat1, in_mat2), cv::gout(out_mat), cv::compile_args(pkg)); EXPECT_EQ(0, cv::norm(out_mat, ref_mat)); EXPECT_TRUE(f.is_called); } TEST(GAPI_Pipeline, GraphOutputIs1DMat) { int dim = 100; cv::Mat in_mat(1, 1, CV_8UC3); cv::Mat out_mat; cv::GMat in; auto cc = cv::GComputation(in, GZeros::on(in, cv::GMatDesc(CV_8U, {dim}))) .compile(cv::descr_of(in_mat), cv::compile_args(cv::gapi::kernels())); // NB: Computation is able to write 1D output cv::Mat to empty out_mat. ASSERT_NO_THROW(cc(cv::gin(in_mat), cv::gout(out_mat))); ASSERT_EQ(1, out_mat.size.dims()); ASSERT_EQ(dim, out_mat.size[0]); // NB: Computation is able to write 1D output cv::Mat // to pre-allocated with the same meta out_mat. ASSERT_NO_THROW(cc(cv::gin(in_mat), cv::gout(out_mat))); ASSERT_EQ(1, out_mat.size.dims()); ASSERT_EQ(dim, out_mat.size[0]); } TEST(GAPI_Pipeline, 1DMatBetweenIslands) { int dim = 100; cv::Mat in_mat(1, 1, CV_8UC3); cv::Mat out_mat; cv::Mat ref_mat({dim}, CV_8U); ref_mat.dims = 1; ref_mat.setTo(0); cv::GMat in; auto out = cv::gapi::copy(GZeros::on(cv::gapi::copy(in), cv::GMatDesc(CV_8U, {dim}))); auto cc = cv::GComputation(in, out) .compile(cv::descr_of(in_mat), cv::compile_args(cv::gapi::kernels())); cc(cv::gin(in_mat), cv::gout(out_mat)); EXPECT_EQ(0, cv::norm(out_mat, ref_mat)); } TEST(GAPI_Pipeline, 1DMatWithinSingleIsland) { int dim = 100; cv::Size blur_sz(3, 3); cv::Mat in_mat(10, 10, CV_8UC3); cv::randu(in_mat, 0, 255); cv::Mat out_mat; cv::Mat ref_mat({dim}, CV_8U); ref_mat.dims = 1; ref_mat.setTo(0); cv::GMat in; auto out = cv::gapi::blur( GZeros::on(cv::gapi::blur(in, blur_sz), cv::GMatDesc(CV_8U, {dim})), blur_sz); auto cc = cv::GComputation(in, out) .compile(cv::descr_of(in_mat), cv::compile_args(cv::gapi::kernels())); cc(cv::gin(in_mat), cv::gout(out_mat)); EXPECT_EQ(0, cv::norm(out_mat, ref_mat)); } TEST(GAPI_Pipeline, BranchesExecutedInParallel) { cv::GMat in; // NB: cv::gapi::copy used to prevent fusing OCV backend operations // into the single island where they will be executed in turn auto out0 = GBusyWait::on(cv::gapi::copy(in), 1000u /*1sec*/); auto out1 = GBusyWait::on(cv::gapi::copy(in), 1000u /*1sec*/); auto out2 = GBusyWait::on(cv::gapi::copy(in), 1000u /*1sec*/); auto out3 = GBusyWait::on(cv::gapi::copy(in), 1000u /*1sec*/); cv::GComputation comp(cv::GIn(in), cv::GOut(out0,out1,out2,out3)); cv::Mat in_mat = cv::Mat::eye(32, 32, CV_8UC1); cv::Mat out_mat0, out_mat1, out_mat2, out_mat3; using namespace std::chrono; auto s = high_resolution_clock::now(); comp.apply(cv::gin(in_mat), cv::gout(out_mat0, out_mat1, out_mat2, out_mat3), cv::compile_args(cv::use_threaded_executor(4u), cv::gapi::kernels())); auto e = high_resolution_clock::now(); const auto elapsed_in_ms = duration_cast(e-s).count();; EXPECT_GE(1200u, elapsed_in_ms); } } // namespace opencv_test