/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #include #include #include using namespace cv; using namespace cv::flann; //-------------------------------------------------------------------------------- class NearestNeighborTest : public cvtest::BaseTest { public: NearestNeighborTest() {} protected: static const int minValue = 0; static const int maxValue = 1; static const int dims = 30; static const int featuresCount = 2000; static const int K = 1; // * should also test 2nd nn etc.? virtual void run( int start_from ); virtual void createModel( const Mat& data ) = 0; virtual int findNeighbors( Mat& points, Mat& neighbors ) = 0; virtual int checkGetPoins( const Mat& data ); virtual int checkFindBoxed(); virtual int checkFind( const Mat& data ); virtual void releaseModel() = 0; }; int NearestNeighborTest::checkGetPoins( const Mat& ) { return cvtest::TS::OK; } int NearestNeighborTest::checkFindBoxed() { return cvtest::TS::OK; } int NearestNeighborTest::checkFind( const Mat& data ) { int code = cvtest::TS::OK; int pointsCount = 1000; float noise = 0.2f; RNG rng; Mat points( pointsCount, dims, CV_32FC1 ); Mat results( pointsCount, K, CV_32SC1 ); std::vector fmap( pointsCount ); for( int pi = 0; pi < pointsCount; pi++ ) { int fi = rng.next() % featuresCount; fmap[pi] = fi; for( int d = 0; d < dims; d++ ) points.at(pi, d) = data.at(fi, d) + rng.uniform(0.0f, 1.0f) * noise; } code = findNeighbors( points, results ); if( code == cvtest::TS::OK ) { int correctMatches = 0; for( int pi = 0; pi < pointsCount; pi++ ) { if( fmap[pi] == results.at(pi, 0) ) correctMatches++; } double correctPerc = correctMatches / (double)pointsCount; if (correctPerc < .75) { ts->printf( cvtest::TS::LOG, "correct_perc = %d\n", correctPerc ); code = cvtest::TS::FAIL_BAD_ACCURACY; } } return code; } void NearestNeighborTest::run( int /*start_from*/ ) { int code = cvtest::TS::OK, tempCode; Mat desc( featuresCount, dims, CV_32FC1 ); randu( desc, Scalar(minValue), Scalar(maxValue) ); createModel( desc ); tempCode = checkGetPoins( desc ); if( tempCode != cvtest::TS::OK ) { ts->printf( cvtest::TS::LOG, "bad accuracy of GetPoints \n" ); code = tempCode; } tempCode = checkFindBoxed(); if( tempCode != cvtest::TS::OK ) { ts->printf( cvtest::TS::LOG, "bad accuracy of FindBoxed \n" ); code = tempCode; } tempCode = checkFind( desc ); if( tempCode != cvtest::TS::OK ) { ts->printf( cvtest::TS::LOG, "bad accuracy of Find \n" ); code = tempCode; } releaseModel(); ts->set_failed_test_info( code ); } //-------------------------------------------------------------------------------- class CV_LSHTest : public NearestNeighborTest { public: CV_LSHTest() {} protected: virtual void createModel( const Mat& data ); virtual int findNeighbors( Mat& points, Mat& neighbors ); virtual void releaseModel(); struct CvLSH* lsh; CvMat desc; }; void CV_LSHTest::createModel( const Mat& data ) { desc = data; lsh = cvCreateMemoryLSH( data.cols, data.rows, 70, 20, CV_32FC1 ); cvLSHAdd( lsh, &desc ); } int CV_LSHTest::findNeighbors( Mat& points, Mat& neighbors ) { const int emax = 20; Mat dist( points.rows, neighbors.cols, CV_64FC1); CvMat _dist = dist, _points = points, _neighbors = neighbors; cvLSHQuery( lsh, &_points, &_neighbors, &_dist, neighbors.cols, emax ); return cvtest::TS::OK; } void CV_LSHTest::releaseModel() { cvReleaseLSH( &lsh ); } //-------------------------------------------------------------------------------- class CV_FeatureTreeTest_C : public NearestNeighborTest { public: CV_FeatureTreeTest_C() {} protected: virtual int findNeighbors( Mat& points, Mat& neighbors ); virtual void releaseModel(); CvFeatureTree* tr; CvMat desc; }; int CV_FeatureTreeTest_C::findNeighbors( Mat& points, Mat& neighbors ) { const int emax = 20; Mat dist( points.rows, neighbors.cols, CV_64FC1); CvMat _dist = dist, _points = points, _neighbors = neighbors; cvFindFeatures( tr, &_points, &_neighbors, &_dist, neighbors.cols, emax ); return cvtest::TS::OK; } void CV_FeatureTreeTest_C::releaseModel() { cvReleaseFeatureTree( tr ); } //-------------------------------------- class CV_SpillTreeTest_C : public CV_FeatureTreeTest_C { public: CV_SpillTreeTest_C() {} protected: virtual void createModel( const Mat& data ); }; void CV_SpillTreeTest_C::createModel( const Mat& data ) { desc = data; tr = cvCreateSpillTree( &desc ); } //-------------------------------------- class CV_KDTreeTest_C : public CV_FeatureTreeTest_C { public: CV_KDTreeTest_C() {} protected: virtual void createModel( const Mat& data ); virtual int checkFindBoxed(); }; void CV_KDTreeTest_C::createModel( const Mat& data ) { desc = data; tr = cvCreateKDTree( &desc ); } int CV_KDTreeTest_C::checkFindBoxed() { Mat min(1, dims, CV_32FC1 ), max(1, dims, CV_32FC1 ), indices( 1, 1, CV_32SC1 ); float l = minValue, r = maxValue; min.setTo(Scalar(l)), max.setTo(Scalar(r)); CvMat _min = min, _max = max, _indices = indices; // TODO check indices if( cvFindFeaturesBoxed( tr, &_min, &_max, &_indices ) != featuresCount ) return cvtest::TS::FAIL_BAD_ACCURACY; return cvtest::TS::OK; } //-------------------------------------------------------------------------------- class CV_KDTreeTest_CPP : public NearestNeighborTest { public: CV_KDTreeTest_CPP() {} protected: virtual void createModel( const Mat& data ); virtual int checkGetPoins( const Mat& data ); virtual int findNeighbors( Mat& points, Mat& neighbors ); virtual int checkFindBoxed(); virtual void releaseModel(); KDTree* tr; }; void CV_KDTreeTest_CPP::createModel( const Mat& data ) { tr = new KDTree( data, false ); } int CV_KDTreeTest_CPP::checkGetPoins( const Mat& data ) { Mat res1( data.size(), data.type() ), res2( data.size(), data.type() ), res3( data.size(), data.type() ); Mat idxs( 1, data.rows, CV_32SC1 ); for( int pi = 0; pi < data.rows; pi++ ) { idxs.at(0, pi) = pi; // 1st way const float* point = tr->getPoint(pi); for( int di = 0; di < data.cols; di++ ) res1.at(pi, di) = point[di]; } // 2nd way tr->getPoints( idxs.ptr(0), data.rows, res2 ); // 3d way tr->getPoints( idxs, res3 ); if( norm( res1, data, NORM_L1) != 0 || norm( res2, data, NORM_L1) != 0 || norm( res3, data, NORM_L1) != 0) return cvtest::TS::FAIL_BAD_ACCURACY; return cvtest::TS::OK; } int CV_KDTreeTest_CPP::checkFindBoxed() { vector min( dims, minValue), max(dims, maxValue); vector indices; tr->findOrthoRange( &min[0], &max[0], &indices ); // TODO check indices if( (int)indices.size() != featuresCount) return cvtest::TS::FAIL_BAD_ACCURACY; return cvtest::TS::OK; } int CV_KDTreeTest_CPP::findNeighbors( Mat& points, Mat& neighbors ) { const int emax = 20; Mat neighbors2( neighbors.size(), CV_32SC1 ); int j; vector min(points.cols, minValue); vector max(points.cols, maxValue); for( int pi = 0; pi < points.rows; pi++ ) { // 1st way tr->findNearest( points.ptr(pi), neighbors.cols, emax, neighbors.ptr(pi) ); // 2nd way vector neighborsIdx2( neighbors2.cols, 0 ); tr->findNearest( points.ptr(pi), neighbors2.cols, emax, &neighborsIdx2 ); vector::const_iterator it2 = neighborsIdx2.begin(); for( j = 0; it2 != neighborsIdx2.end(); ++it2, j++ ) neighbors2.at(pi,j) = *it2; } // compare results if( norm( neighbors, neighbors2, NORM_L1 ) != 0 ) return cvtest::TS::FAIL_BAD_ACCURACY; return cvtest::TS::OK; } void CV_KDTreeTest_CPP::releaseModel() { delete tr; } //-------------------------------------------------------------------------------- class CV_FlannTest : public NearestNeighborTest { public: CV_FlannTest() {} protected: void createIndex( const Mat& data, const IndexParams& params ); int knnSearch( Mat& points, Mat& neighbors ); int radiusSearch( Mat& points, Mat& neighbors ); virtual void releaseModel(); Index* index; }; void CV_FlannTest::createIndex( const Mat& data, const IndexParams& params ) { index = new Index( data, params ); } int CV_FlannTest::knnSearch( Mat& points, Mat& neighbors ) { Mat dist( points.rows, neighbors.cols, CV_32FC1); int knn = 1, j; // 1st way index->knnSearch( points, neighbors, dist, knn, SearchParams() ); // 2nd way Mat neighbors1( neighbors.size(), CV_32SC1 ); for( int i = 0; i < points.rows; i++ ) { float* fltPtr = points.ptr(i); vector query( fltPtr, fltPtr + points.cols ); vector indices( neighbors1.cols, 0 ); vector dists( dist.cols, 0 ); index->knnSearch( query, indices, dists, knn, SearchParams() ); vector::const_iterator it = indices.begin(); for( j = 0; it != indices.end(); ++it, j++ ) neighbors1.at(i,j) = *it; } // compare results if( norm( neighbors, neighbors1, NORM_L1 ) != 0 ) return cvtest::TS::FAIL_BAD_ACCURACY; return cvtest::TS::OK; } int CV_FlannTest::radiusSearch( Mat& points, Mat& neighbors ) { Mat dist( 1, neighbors.cols, CV_32FC1); Mat neighbors1( neighbors.size(), CV_32SC1 ); float radius = 10.0f; int j; // radiusSearch can only search one feature at a time for range search for( int i = 0; i < points.rows; i++ ) { // 1st way Mat p( 1, points.cols, CV_32FC1, points.ptr(i) ), n( 1, neighbors.cols, CV_32SC1, neighbors.ptr(i) ); index->radiusSearch( p, n, dist, radius, SearchParams() ); // 2nd way float* fltPtr = points.ptr(i); vector query( fltPtr, fltPtr + points.cols ); vector indices( neighbors1.cols, 0 ); vector dists( dist.cols, 0 ); index->radiusSearch( query, indices, dists, radius, SearchParams() ); vector::const_iterator it = indices.begin(); for( j = 0; it != indices.end(); ++it, j++ ) neighbors1.at(i,j) = *it; } // compare results if( norm( neighbors, neighbors1, NORM_L1 ) != 0 ) return cvtest::TS::FAIL_BAD_ACCURACY; return cvtest::TS::OK; } void CV_FlannTest::releaseModel() { delete index; } //--------------------------------------- class CV_FlannLinearIndexTest : public CV_FlannTest { public: CV_FlannLinearIndexTest() {} protected: virtual void createModel( const Mat& data ) { createIndex( data, LinearIndexParams() ); } virtual int findNeighbors( Mat& points, Mat& neighbors ) { return knnSearch( points, neighbors ); } }; //--------------------------------------- class CV_FlannKMeansIndexTest : public CV_FlannTest { public: CV_FlannKMeansIndexTest() {} protected: virtual void createModel( const Mat& data ) { createIndex( data, KMeansIndexParams() ); } virtual int findNeighbors( Mat& points, Mat& neighbors ) { return radiusSearch( points, neighbors ); } }; //--------------------------------------- class CV_FlannKDTreeIndexTest : public CV_FlannTest { public: CV_FlannKDTreeIndexTest() {} protected: virtual void createModel( const Mat& data ) { createIndex( data, KDTreeIndexParams() ); } virtual int findNeighbors( Mat& points, Mat& neighbors ) { return radiusSearch( points, neighbors ); } }; //---------------------------------------- class CV_FlannCompositeIndexTest : public CV_FlannTest { public: CV_FlannCompositeIndexTest() {} protected: virtual void createModel( const Mat& data ) { createIndex( data, CompositeIndexParams() ); } virtual int findNeighbors( Mat& points, Mat& neighbors ) { return knnSearch( points, neighbors ); } }; //---------------------------------------- class CV_FlannAutotunedIndexTest : public CV_FlannTest { public: CV_FlannAutotunedIndexTest() {} protected: virtual void createModel( const Mat& data ) { createIndex( data, AutotunedIndexParams() ); } virtual int findNeighbors( Mat& points, Mat& neighbors ) { return knnSearch( points, neighbors ); } }; //---------------------------------------- class CV_FlannSavedIndexTest : public CV_FlannTest { public: CV_FlannSavedIndexTest() {} protected: virtual void createModel( const Mat& data ); virtual int findNeighbors( Mat& points, Mat& neighbors ) { return knnSearch( points, neighbors ); } }; void CV_FlannSavedIndexTest::createModel(const cv::Mat &data) { switch ( cvtest::randInt(ts->get_rng()) % 2 ) { //case 0: createIndex( data, LinearIndexParams() ); break; // nothing to save for linear search case 0: createIndex( data, KMeansIndexParams() ); break; case 1: createIndex( data, KDTreeIndexParams() ); break; //case 2: createIndex( data, CompositeIndexParams() ); break; // nothing to save for linear search //case 2: createIndex( data, AutotunedIndexParams() ); break; // possible linear index ! default: assert(0); } char filename[50]; tmpnam( filename ); if(filename[0] == '\\') filename[0] = '_'; index->save( filename ); createIndex( data, SavedIndexParams(filename)); remove( filename ); } TEST(Features2d_LSH, regression) { CV_LSHTest test; test.safe_run(); } TEST(Features2d_SpillTree, regression) { CV_SpillTreeTest_C test; test.safe_run(); } TEST(Features2d_KDTree_C, regression) { CV_KDTreeTest_C test; test.safe_run(); } TEST(Features2d_KDTree_CPP, regression) { CV_KDTreeTest_CPP test; test.safe_run(); } TEST(Features2d_FLANN_Linear, regression) { CV_FlannLinearIndexTest test; test.safe_run(); } TEST(Features2d_FLANN_KMeans, regression) { CV_FlannKMeansIndexTest test; test.safe_run(); } TEST(Features2d_FLANN_KDTree, regression) { CV_FlannKDTreeIndexTest test; test.safe_run(); } TEST(Features2d_FLANN_Composite, regression) { CV_FlannCompositeIndexTest test; test.safe_run(); } TEST(Features2d_FLANN_Auto, regression) { CV_FlannAutotunedIndexTest test; test.safe_run(); } TEST(Features2d_FLANN_Saved, regression) { CV_FlannSavedIndexTest test; test.safe_run(); }