#include "precomp.hpp" #undef ALEX_DEBUG #include "debug.hpp" #include #include #define ABSCLIP(val,threshold) MIN(MAX((val),-(threshold)),(threshold)) namespace cv{namespace optim{ class AddFloatToCharScaled{ public: AddFloatToCharScaled(float scale):_scale(scale){} inline float operator()(float a,uchar b){ return a+_scale*((float)b); } private: float _scale; }; void denoise_TVL1(const std::vector& observations,Mat& result, double lambda, int niters){ CV_Assert(observations.size()>0 && niters>0 && lambda>0); const float L2 = 8.0f, tau = 0.02f, sigma = 1./(L2*tau), theta = 1.f; float clambda = (float)lambda; float s=0; const int workdepth = CV_32F; int i, x, y, rows=observations[0].rows, cols=observations[0].cols,count; for(i=1;i<(int)observations.size();i++){ CV_Assert(observations[i].rows==rows && observations[i].cols==cols); } Mat X, P = Mat::zeros(rows, cols, CV_MAKETYPE(workdepth, 2)); observations[0].convertTo(X, workdepth, 1./255); std::vector< Mat_ > Rs(observations.size()); for(count=0;count<(int)Rs.size();count++){ Rs[count]=Mat::zeros(rows,cols,workdepth); } for( i = 0; i < niters; i++ ) { float currsigma = i == 0 ? 1 + sigma : sigma; // P_ = P + sigma*nabla(X) // P(x,y) = P_(x,y)/max(||P(x,y)||,1) for( y = 0; y < rows; y++ ) { const float* x_curr = X.ptr(y); const float* x_next = X.ptr(std::min(y+1, rows-1)); Point2f* p_curr = P.ptr(y); float dx, dy, m; for( x = 0; x < cols-1; x++ ) { dx = (x_curr[x+1] - x_curr[x])*currsigma + p_curr[x].x; dy = (x_next[x] - x_curr[x])*currsigma + p_curr[x].y; m = 1.f/std::max(std::sqrt(dx*dx + dy*dy), 1.f); p_curr[x].x = dx*m; p_curr[x].y = dy*m; } dy = (x_next[x] - x_curr[x])*currsigma + p_curr[x].y; m = 1.f/std::max(std::abs(dy), 1.f); p_curr[x].x = 0.f; p_curr[x].y = dy*m; } //Rs = clip(Rs + sigma*(X-imgs), -clambda, clambda) for(count=0;count<(int)Rs.size();count++){ std::transform,MatConstIterator_,MatIterator_,AddFloatToCharScaled>( Rs[count].begin(),Rs[count].end(),observations[count].begin(), Rs[count].begin(),AddFloatToCharScaled(-sigma/255.0)); Rs[count]+=sigma*X; min(Rs[count],clambda,Rs[count]); max(Rs[count],-clambda,Rs[count]); } for( y = 0; y < rows; y++ ) { float* x_curr = X.ptr(y); const Point2f* p_curr = P.ptr(y); const Point2f* p_prev = P.ptr(std::max(y - 1, 0)); // X1 = X + tau*(-nablaT(P)) x = 0; s=0.0; for(count=0;count<(int)Rs.size();count++){ s=s+Rs[count](y,x); } float x_new = x_curr[x] + tau*(p_curr[x].y - p_prev[x].y)-tau*s; // X = X2 + theta*(X2 - X) x_curr[x] = x_new + theta*(x_new - x_curr[x]); for(x = 1; x < cols; x++ ) { s=0.0; for(count=0;count<(int)Rs.size();count++){ s+=Rs[count](y,x); } // X1 = X + tau*(-nablaT(P)) x_new = x_curr[x] + tau*(p_curr[x].x - p_curr[x-1].x + p_curr[x].y - p_prev[x].y)-tau*s; // X = X2 + theta*(X2 - X) x_curr[x] = x_new + theta*(x_new - x_curr[x]); } } } result.create(X.rows,X.cols,CV_8U); X.convertTo(result, CV_8U, 255); } }}