#include "clapack.h" /* Table of constant values */ static integer c__1 = 1; static integer c_n1 = -1; static integer c__2 = 2; static real c_b20 = -1.f; static real c_b22 = 1.f; /* Subroutine */ int sgetri_(integer *n, real *a, integer *lda, integer *ipiv, real *work, integer *lwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3; /* Local variables */ integer i__, j, jb, nb, jj, jp, nn, iws, nbmin; extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *, integer *, real *, real *, integer *, real *, integer *, real *, real *, integer *), sgemv_(char *, integer *, integer *, real *, real *, integer *, real *, integer *, real *, real *, integer *), sswap_(integer *, real *, integer *, real *, integer *), strsm_(char *, char *, char *, char *, integer *, integer *, real *, real *, integer *, real *, integer * ), xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); integer ldwork, lwkopt; logical lquery; extern /* Subroutine */ int strtri_(char *, char *, integer *, real *, integer *, integer *); /* -- LAPACK routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SGETRI computes the inverse of a matrix using the LU factorization */ /* computed by SGETRF. */ /* This method inverts U and then computes inv(A) by solving the system */ /* inv(A)*L = inv(U) for inv(A). */ /* Arguments */ /* ========= */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* A (input/output) REAL array, dimension (LDA,N) */ /* On entry, the factors L and U from the factorization */ /* A = P*L*U as computed by SGETRF. */ /* On exit, if INFO = 0, the inverse of the original matrix A. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N). */ /* IPIV (input) INTEGER array, dimension (N) */ /* The pivot indices from SGETRF; for 1<=i<=N, row i of the */ /* matrix was interchanged with row IPIV(i). */ /* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO=0, then WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. LWORK >= max(1,N). */ /* For optimal performance LWORK >= N*NB, where NB is */ /* the optimal blocksize returned by ILAENV. */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal size of the WORK array, returns */ /* this value as the first entry of the WORK array, and no error */ /* message related to LWORK is issued by XERBLA. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* > 0: if INFO = i, U(i,i) is exactly zero; the matrix is */ /* singular and its inverse could not be computed. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --ipiv; --work; /* Function Body */ *info = 0; nb = ilaenv_(&c__1, "SGETRI", " ", n, &c_n1, &c_n1, &c_n1); lwkopt = *n * nb; work[1] = (real) lwkopt; lquery = *lwork == -1; if (*n < 0) { *info = -1; } else if (*lda < max(1,*n)) { *info = -3; } else if (*lwork < max(1,*n) && ! lquery) { *info = -6; } if (*info != 0) { i__1 = -(*info); xerbla_("SGETRI", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Form inv(U). If INFO > 0 from STRTRI, then U is singular, */ /* and the inverse is not computed. */ strtri_("Upper", "Non-unit", n, &a[a_offset], lda, info); if (*info > 0) { return 0; } nbmin = 2; ldwork = *n; if (nb > 1 && nb < *n) { /* Computing MAX */ i__1 = ldwork * nb; iws = max(i__1,1); if (*lwork < iws) { nb = *lwork / ldwork; /* Computing MAX */ i__1 = 2, i__2 = ilaenv_(&c__2, "SGETRI", " ", n, &c_n1, &c_n1, & c_n1); nbmin = max(i__1,i__2); } } else { iws = *n; } /* Solve the equation inv(A)*L = inv(U) for inv(A). */ if (nb < nbmin || nb >= *n) { /* Use unblocked code. */ for (j = *n; j >= 1; --j) { /* Copy current column of L to WORK and replace with zeros. */ i__1 = *n; for (i__ = j + 1; i__ <= i__1; ++i__) { work[i__] = a[i__ + j * a_dim1]; a[i__ + j * a_dim1] = 0.f; /* L10: */ } /* Compute current column of inv(A). */ if (j < *n) { i__1 = *n - j; sgemv_("No transpose", n, &i__1, &c_b20, &a[(j + 1) * a_dim1 + 1], lda, &work[j + 1], &c__1, &c_b22, &a[j * a_dim1 + 1], &c__1); } /* L20: */ } } else { /* Use blocked code. */ nn = (*n - 1) / nb * nb + 1; i__1 = -nb; for (j = nn; i__1 < 0 ? j >= 1 : j <= 1; j += i__1) { /* Computing MIN */ i__2 = nb, i__3 = *n - j + 1; jb = min(i__2,i__3); /* Copy current block column of L to WORK and replace with */ /* zeros. */ i__2 = j + jb - 1; for (jj = j; jj <= i__2; ++jj) { i__3 = *n; for (i__ = jj + 1; i__ <= i__3; ++i__) { work[i__ + (jj - j) * ldwork] = a[i__ + jj * a_dim1]; a[i__ + jj * a_dim1] = 0.f; /* L30: */ } /* L40: */ } /* Compute current block column of inv(A). */ if (j + jb <= *n) { i__2 = *n - j - jb + 1; sgemm_("No transpose", "No transpose", n, &jb, &i__2, &c_b20, &a[(j + jb) * a_dim1 + 1], lda, &work[j + jb], & ldwork, &c_b22, &a[j * a_dim1 + 1], lda); } strsm_("Right", "Lower", "No transpose", "Unit", n, &jb, &c_b22, & work[j], &ldwork, &a[j * a_dim1 + 1], lda); /* L50: */ } } /* Apply column interchanges. */ for (j = *n - 1; j >= 1; --j) { jp = ipiv[j]; if (jp != j) { sswap_(n, &a[j * a_dim1 + 1], &c__1, &a[jp * a_dim1 + 1], &c__1); } /* L60: */ } work[1] = (real) iws; return 0; /* End of SGETRI */ } /* sgetri_ */