#include "clapack.h" /* Table of constant values */ static integer c__1 = 1; static integer c_n1 = -1; /* Subroutine */ int sorgbr_(char *vect, integer *m, integer *n, integer *k, real *a, integer *lda, real *tau, real *work, integer *lwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3; /* Local variables */ integer i__, j, nb, mn; extern logical lsame_(char *, char *); integer iinfo; logical wantq; extern /* Subroutine */ int xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); extern /* Subroutine */ int sorglq_(integer *, integer *, integer *, real *, integer *, real *, real *, integer *, integer *), sorgqr_( integer *, integer *, integer *, real *, integer *, real *, real * , integer *, integer *); integer lwkopt; logical lquery; /* -- LAPACK routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SORGBR generates one of the real orthogonal matrices Q or P**T */ /* determined by SGEBRD when reducing a real matrix A to bidiagonal */ /* form: A = Q * B * P**T. Q and P**T are defined as products of */ /* elementary reflectors H(i) or G(i) respectively. */ /* If VECT = 'Q', A is assumed to have been an M-by-K matrix, and Q */ /* is of order M: */ /* if m >= k, Q = H(1) H(2) . . . H(k) and SORGBR returns the first n */ /* columns of Q, where m >= n >= k; */ /* if m < k, Q = H(1) H(2) . . . H(m-1) and SORGBR returns Q as an */ /* M-by-M matrix. */ /* If VECT = 'P', A is assumed to have been a K-by-N matrix, and P**T */ /* is of order N: */ /* if k < n, P**T = G(k) . . . G(2) G(1) and SORGBR returns the first m */ /* rows of P**T, where n >= m >= k; */ /* if k >= n, P**T = G(n-1) . . . G(2) G(1) and SORGBR returns P**T as */ /* an N-by-N matrix. */ /* Arguments */ /* ========= */ /* VECT (input) CHARACTER*1 */ /* Specifies whether the matrix Q or the matrix P**T is */ /* required, as defined in the transformation applied by SGEBRD: */ /* = 'Q': generate Q; */ /* = 'P': generate P**T. */ /* M (input) INTEGER */ /* The number of rows of the matrix Q or P**T to be returned. */ /* M >= 0. */ /* N (input) INTEGER */ /* The number of columns of the matrix Q or P**T to be returned. */ /* N >= 0. */ /* If VECT = 'Q', M >= N >= min(M,K); */ /* if VECT = 'P', N >= M >= min(N,K). */ /* K (input) INTEGER */ /* If VECT = 'Q', the number of columns in the original M-by-K */ /* matrix reduced by SGEBRD. */ /* If VECT = 'P', the number of rows in the original K-by-N */ /* matrix reduced by SGEBRD. */ /* K >= 0. */ /* A (input/output) REAL array, dimension (LDA,N) */ /* On entry, the vectors which define the elementary reflectors, */ /* as returned by SGEBRD. */ /* On exit, the M-by-N matrix Q or P**T. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,M). */ /* TAU (input) REAL array, dimension */ /* (min(M,K)) if VECT = 'Q' */ /* (min(N,K)) if VECT = 'P' */ /* TAU(i) must contain the scalar factor of the elementary */ /* reflector H(i) or G(i), which determines Q or P**T, as */ /* returned by SGEBRD in its array argument TAUQ or TAUP. */ /* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. LWORK >= max(1,min(M,N)). */ /* For optimum performance LWORK >= min(M,N)*NB, where NB */ /* is the optimal blocksize. */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal size of the WORK array, returns */ /* this value as the first entry of the WORK array, and no error */ /* message related to LWORK is issued by XERBLA. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input arguments */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; --work; /* Function Body */ *info = 0; wantq = lsame_(vect, "Q"); mn = min(*m,*n); lquery = *lwork == -1; if (! wantq && ! lsame_(vect, "P")) { *info = -1; } else if (*m < 0) { *info = -2; } else if (*n < 0 || wantq && (*n > *m || *n < min(*m,*k)) || ! wantq && ( *m > *n || *m < min(*n,*k))) { *info = -3; } else if (*k < 0) { *info = -4; } else if (*lda < max(1,*m)) { *info = -6; } else if (*lwork < max(1,mn) && ! lquery) { *info = -9; } if (*info == 0) { if (wantq) { nb = ilaenv_(&c__1, "SORGQR", " ", m, n, k, &c_n1); } else { nb = ilaenv_(&c__1, "SORGLQ", " ", m, n, k, &c_n1); } lwkopt = max(1,mn) * nb; work[1] = (real) lwkopt; } if (*info != 0) { i__1 = -(*info); xerbla_("SORGBR", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*m == 0 || *n == 0) { work[1] = 1.f; return 0; } if (wantq) { /* Form Q, determined by a call to SGEBRD to reduce an m-by-k */ /* matrix */ if (*m >= *k) { /* If m >= k, assume m >= n >= k */ sorgqr_(m, n, k, &a[a_offset], lda, &tau[1], &work[1], lwork, & iinfo); } else { /* If m < k, assume m = n */ /* Shift the vectors which define the elementary reflectors one */ /* column to the right, and set the first row and column of Q */ /* to those of the unit matrix */ for (j = *m; j >= 2; --j) { a[j * a_dim1 + 1] = 0.f; i__1 = *m; for (i__ = j + 1; i__ <= i__1; ++i__) { a[i__ + j * a_dim1] = a[i__ + (j - 1) * a_dim1]; /* L10: */ } /* L20: */ } a[a_dim1 + 1] = 1.f; i__1 = *m; for (i__ = 2; i__ <= i__1; ++i__) { a[i__ + a_dim1] = 0.f; /* L30: */ } if (*m > 1) { /* Form Q(2:m,2:m) */ i__1 = *m - 1; i__2 = *m - 1; i__3 = *m - 1; sorgqr_(&i__1, &i__2, &i__3, &a[(a_dim1 << 1) + 2], lda, &tau[ 1], &work[1], lwork, &iinfo); } } } else { /* Form P', determined by a call to SGEBRD to reduce a k-by-n */ /* matrix */ if (*k < *n) { /* If k < n, assume k <= m <= n */ sorglq_(m, n, k, &a[a_offset], lda, &tau[1], &work[1], lwork, & iinfo); } else { /* If k >= n, assume m = n */ /* Shift the vectors which define the elementary reflectors one */ /* row downward, and set the first row and column of P' to */ /* those of the unit matrix */ a[a_dim1 + 1] = 1.f; i__1 = *n; for (i__ = 2; i__ <= i__1; ++i__) { a[i__ + a_dim1] = 0.f; /* L40: */ } i__1 = *n; for (j = 2; j <= i__1; ++j) { for (i__ = j - 1; i__ >= 2; --i__) { a[i__ + j * a_dim1] = a[i__ - 1 + j * a_dim1]; /* L50: */ } a[j * a_dim1 + 1] = 0.f; /* L60: */ } if (*n > 1) { /* Form P'(2:n,2:n) */ i__1 = *n - 1; i__2 = *n - 1; i__3 = *n - 1; sorglq_(&i__1, &i__2, &i__3, &a[(a_dim1 << 1) + 2], lda, &tau[ 1], &work[1], lwork, &iinfo); } } } work[1] = (real) lwkopt; return 0; /* End of SORGBR */ } /* sorgbr_ */