// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html #include "precomp.hpp" #include "stat.hpp" namespace cv { template void batchDistL1_(const _Tp* src1, const _Tp* src2, size_t step2, int nvecs, int len, _Rt* dist, const uchar* mask) { step2 /= sizeof(src2[0]); if( !mask ) { for( int i = 0; i < nvecs; i++ ) dist[i] = normL1<_Tp, _Rt>(src1, src2 + step2*i, len); } else { _Rt val0 = std::numeric_limits<_Rt>::max(); for( int i = 0; i < nvecs; i++ ) dist[i] = mask[i] ? normL1<_Tp, _Rt>(src1, src2 + step2*i, len) : val0; } } template void batchDistL2Sqr_(const _Tp* src1, const _Tp* src2, size_t step2, int nvecs, int len, _Rt* dist, const uchar* mask) { step2 /= sizeof(src2[0]); if( !mask ) { for( int i = 0; i < nvecs; i++ ) dist[i] = normL2Sqr<_Tp, _Rt>(src1, src2 + step2*i, len); } else { _Rt val0 = std::numeric_limits<_Rt>::max(); for( int i = 0; i < nvecs; i++ ) dist[i] = mask[i] ? normL2Sqr<_Tp, _Rt>(src1, src2 + step2*i, len) : val0; } } template void batchDistL2_(const _Tp* src1, const _Tp* src2, size_t step2, int nvecs, int len, _Rt* dist, const uchar* mask) { step2 /= sizeof(src2[0]); if( !mask ) { for( int i = 0; i < nvecs; i++ ) dist[i] = std::sqrt(normL2Sqr<_Tp, _Rt>(src1, src2 + step2*i, len)); } else { _Rt val0 = std::numeric_limits<_Rt>::max(); for( int i = 0; i < nvecs; i++ ) dist[i] = mask[i] ? std::sqrt(normL2Sqr<_Tp, _Rt>(src1, src2 + step2*i, len)) : val0; } } static void batchDistHamming(const uchar* src1, const uchar* src2, size_t step2, int nvecs, int len, int* dist, const uchar* mask) { step2 /= sizeof(src2[0]); if( !mask ) { for( int i = 0; i < nvecs; i++ ) dist[i] = hal::normHamming(src1, src2 + step2*i, len); } else { int val0 = INT_MAX; for( int i = 0; i < nvecs; i++ ) { if (mask[i]) dist[i] = hal::normHamming(src1, src2 + step2*i, len); else dist[i] = val0; } } } static void batchDistHamming2(const uchar* src1, const uchar* src2, size_t step2, int nvecs, int len, int* dist, const uchar* mask) { step2 /= sizeof(src2[0]); if( !mask ) { for( int i = 0; i < nvecs; i++ ) dist[i] = hal::normHamming(src1, src2 + step2*i, len, 2); } else { int val0 = INT_MAX; for( int i = 0; i < nvecs; i++ ) { if (mask[i]) dist[i] = hal::normHamming(src1, src2 + step2*i, len, 2); else dist[i] = val0; } } } static void batchDistL1_8u32s(const uchar* src1, const uchar* src2, size_t step2, int nvecs, int len, int* dist, const uchar* mask) { batchDistL1_(src1, src2, step2, nvecs, len, dist, mask); } static void batchDistL1_8u32f(const uchar* src1, const uchar* src2, size_t step2, int nvecs, int len, float* dist, const uchar* mask) { batchDistL1_(src1, src2, step2, nvecs, len, dist, mask); } static void batchDistL2Sqr_8u32s(const uchar* src1, const uchar* src2, size_t step2, int nvecs, int len, int* dist, const uchar* mask) { batchDistL2Sqr_(src1, src2, step2, nvecs, len, dist, mask); } static void batchDistL2Sqr_8u32f(const uchar* src1, const uchar* src2, size_t step2, int nvecs, int len, float* dist, const uchar* mask) { batchDistL2Sqr_(src1, src2, step2, nvecs, len, dist, mask); } static void batchDistL2_8u32f(const uchar* src1, const uchar* src2, size_t step2, int nvecs, int len, float* dist, const uchar* mask) { batchDistL2_(src1, src2, step2, nvecs, len, dist, mask); } static void batchDistL1_32f(const float* src1, const float* src2, size_t step2, int nvecs, int len, float* dist, const uchar* mask) { batchDistL1_(src1, src2, step2, nvecs, len, dist, mask); } static void batchDistL2Sqr_32f(const float* src1, const float* src2, size_t step2, int nvecs, int len, float* dist, const uchar* mask) { batchDistL2Sqr_(src1, src2, step2, nvecs, len, dist, mask); } static void batchDistL2_32f(const float* src1, const float* src2, size_t step2, int nvecs, int len, float* dist, const uchar* mask) { batchDistL2_(src1, src2, step2, nvecs, len, dist, mask); } typedef void (*BatchDistFunc)(const uchar* src1, const uchar* src2, size_t step2, int nvecs, int len, uchar* dist, const uchar* mask); struct BatchDistInvoker : public ParallelLoopBody { BatchDistInvoker( const Mat& _src1, const Mat& _src2, Mat& _dist, Mat& _nidx, int _K, const Mat& _mask, int _update, BatchDistFunc _func) { src1 = &_src1; src2 = &_src2; dist = &_dist; nidx = &_nidx; K = _K; mask = &_mask; update = _update; func = _func; } void operator()(const Range& range) const CV_OVERRIDE { AutoBuffer buf(src2->rows); int* bufptr = buf; for( int i = range.start; i < range.end; i++ ) { func(src1->ptr(i), src2->ptr(), src2->step, src2->rows, src2->cols, K > 0 ? (uchar*)bufptr : dist->ptr(i), mask->data ? mask->ptr(i) : 0); if( K > 0 ) { int* nidxptr = nidx->ptr(i); // since positive float's can be compared just like int's, // we handle both CV_32S and CV_32F cases with a single branch int* distptr = (int*)dist->ptr(i); int j, k; for( j = 0; j < src2->rows; j++ ) { int d = bufptr[j]; if( d < distptr[K-1] ) { for( k = K-2; k >= 0 && distptr[k] > d; k-- ) { nidxptr[k+1] = nidxptr[k]; distptr[k+1] = distptr[k]; } nidxptr[k+1] = j + update; distptr[k+1] = d; } } } } } const Mat *src1; const Mat *src2; Mat *dist; Mat *nidx; const Mat *mask; int K; int update; BatchDistFunc func; }; } void cv::batchDistance( InputArray _src1, InputArray _src2, OutputArray _dist, int dtype, OutputArray _nidx, int normType, int K, InputArray _mask, int update, bool crosscheck ) { CV_INSTRUMENT_REGION() Mat src1 = _src1.getMat(), src2 = _src2.getMat(), mask = _mask.getMat(); int type = src1.type(); CV_Assert( type == src2.type() && src1.cols == src2.cols && (type == CV_32F || type == CV_8U)); CV_Assert( _nidx.needed() == (K > 0) ); if( dtype == -1 ) { dtype = normType == NORM_HAMMING || normType == NORM_HAMMING2 ? CV_32S : CV_32F; } CV_Assert( (type == CV_8U && dtype == CV_32S) || dtype == CV_32F); K = std::min(K, src2.rows); _dist.create(src1.rows, (K > 0 ? K : src2.rows), dtype); Mat dist = _dist.getMat(), nidx; if( _nidx.needed() ) { _nidx.create(dist.size(), CV_32S); nidx = _nidx.getMat(); } if( update == 0 && K > 0 ) { dist = Scalar::all(dtype == CV_32S ? (double)INT_MAX : (double)FLT_MAX); nidx = Scalar::all(-1); } if( crosscheck ) { CV_Assert( K == 1 && update == 0 && mask.empty() ); Mat tdist, tidx; batchDistance(src2, src1, tdist, dtype, tidx, normType, K, mask, 0, false); // if an idx-th element from src1 appeared to be the nearest to i-th element of src2, // we update the minimum mutual distance between idx-th element of src1 and the whole src2 set. // As a result, if nidx[idx] = i*, it means that idx-th element of src1 is the nearest // to i*-th element of src2 and i*-th element of src2 is the closest to idx-th element of src1. // If nidx[idx] = -1, it means that there is no such ideal couple for it in src2. // This O(N) procedure is called cross-check and it helps to eliminate some false matches. if( dtype == CV_32S ) { for( int i = 0; i < tdist.rows; i++ ) { int idx = tidx.at(i); int d = tdist.at(i), d0 = dist.at(idx); if( d < d0 ) { dist.at(idx) = d; nidx.at(idx) = i + update; } } } else { for( int i = 0; i < tdist.rows; i++ ) { int idx = tidx.at(i); float d = tdist.at(i), d0 = dist.at(idx); if( d < d0 ) { dist.at(idx) = d; nidx.at(idx) = i + update; } } } return; } BatchDistFunc func = 0; if( type == CV_8U ) { if( normType == NORM_L1 && dtype == CV_32S ) func = (BatchDistFunc)batchDistL1_8u32s; else if( normType == NORM_L1 && dtype == CV_32F ) func = (BatchDistFunc)batchDistL1_8u32f; else if( normType == NORM_L2SQR && dtype == CV_32S ) func = (BatchDistFunc)batchDistL2Sqr_8u32s; else if( normType == NORM_L2SQR && dtype == CV_32F ) func = (BatchDistFunc)batchDistL2Sqr_8u32f; else if( normType == NORM_L2 && dtype == CV_32F ) func = (BatchDistFunc)batchDistL2_8u32f; else if( normType == NORM_HAMMING && dtype == CV_32S ) func = (BatchDistFunc)batchDistHamming; else if( normType == NORM_HAMMING2 && dtype == CV_32S ) func = (BatchDistFunc)batchDistHamming2; } else if( type == CV_32F && dtype == CV_32F ) { if( normType == NORM_L1 ) func = (BatchDistFunc)batchDistL1_32f; else if( normType == NORM_L2SQR ) func = (BatchDistFunc)batchDistL2Sqr_32f; else if( normType == NORM_L2 ) func = (BatchDistFunc)batchDistL2_32f; } if( func == 0 ) CV_Error_(CV_StsUnsupportedFormat, ("The combination of type=%d, dtype=%d and normType=%d is not supported", type, dtype, normType)); parallel_for_(Range(0, src1.rows), BatchDistInvoker(src1, src2, dist, nidx, K, mask, update, func)); }