/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Copyright (C) 2014, Itseez Inc, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" namespace cv { namespace ml { static inline double log_ratio( double val ) { const double eps = 1e-5; val = std::max( val, eps ); val = std::min( val, 1. - eps ); return log( val/(1. - val) ); } BoostTreeParams::BoostTreeParams() { boostType = Boost::REAL; weakCount = 100; weightTrimRate = 0.95; } BoostTreeParams::BoostTreeParams( int _boostType, int _weak_count, double _weightTrimRate) { boostType = _boostType; weakCount = _weak_count; weightTrimRate = _weightTrimRate; } class DTreesImplForBoost CV_FINAL : public DTreesImpl { public: DTreesImplForBoost() { params.setCVFolds(0); params.setMaxDepth(1); } virtual ~DTreesImplForBoost() {} bool isClassifier() const CV_OVERRIDE { return true; } void clear() CV_OVERRIDE { DTreesImpl::clear(); } void startTraining( const Ptr& trainData, int flags ) CV_OVERRIDE { DTreesImpl::startTraining(trainData, flags); sumResult.assign(w->sidx.size(), 0.); if( bparams.boostType != Boost::DISCRETE ) { _isClassifier = false; int i, n = (int)w->cat_responses.size(); w->ord_responses.resize(n); double a = -1, b = 1; if( bparams.boostType == Boost::LOGIT ) { a = -2, b = 2; } for( i = 0; i < n; i++ ) w->ord_responses[i] = w->cat_responses[i] > 0 ? b : a; } normalizeWeights(); } void normalizeWeights() { int i, n = (int)w->sidx.size(); double sumw = 0, a, b; for( i = 0; i < n; i++ ) sumw += w->sample_weights[w->sidx[i]]; if( sumw > DBL_EPSILON ) { a = 1./sumw; b = 0; } else { a = 0; b = 1; } for( i = 0; i < n; i++ ) { double& wval = w->sample_weights[w->sidx[i]]; wval = wval*a + b; } } void endTraining() CV_OVERRIDE { DTreesImpl::endTraining(); vector e; std::swap(sumResult, e); } void scaleTree( int root, double scale ) { int nidx = root, pidx = 0; Node *node = 0; // traverse the tree and save all the nodes in depth-first order for(;;) { for(;;) { node = &nodes[nidx]; node->value *= scale; if( node->left < 0 ) break; nidx = node->left; } for( pidx = node->parent; pidx >= 0 && nodes[pidx].right == nidx; nidx = pidx, pidx = nodes[pidx].parent ) ; if( pidx < 0 ) break; nidx = nodes[pidx].right; } } void calcValue( int nidx, const vector& _sidx ) CV_OVERRIDE { DTreesImpl::calcValue(nidx, _sidx); WNode* node = &w->wnodes[nidx]; if( bparams.boostType == Boost::DISCRETE ) { node->value = node->class_idx == 0 ? -1 : 1; } else if( bparams.boostType == Boost::REAL ) { double p = (node->value+1)*0.5; node->value = 0.5*log_ratio(p); } } bool train( const Ptr& trainData, int flags ) CV_OVERRIDE { startTraining(trainData, flags); int treeidx, ntrees = bparams.weakCount >= 0 ? bparams.weakCount : 10000; vector sidx = w->sidx; for( treeidx = 0; treeidx < ntrees; treeidx++ ) { int root = addTree( sidx ); if( root < 0 ) return false; updateWeightsAndTrim( treeidx, sidx ); } endTraining(); return true; } void updateWeightsAndTrim( int treeidx, vector& sidx ) { int i, n = (int)w->sidx.size(); int nvars = (int)varIdx.size(); double sumw = 0., C = 1.; cv::AutoBuffer buf(n + nvars); double* result = buf; float* sbuf = (float*)(result + n); Mat sample(1, nvars, CV_32F, sbuf); int predictFlags = bparams.boostType == Boost::DISCRETE ? (PREDICT_MAX_VOTE | RAW_OUTPUT) : PREDICT_SUM; predictFlags |= COMPRESSED_INPUT; for( i = 0; i < n; i++ ) { w->data->getSample(varIdx, w->sidx[i], sbuf ); result[i] = predictTrees(Range(treeidx, treeidx+1), sample, predictFlags); } // now update weights and other parameters for each type of boosting if( bparams.boostType == Boost::DISCRETE ) { // Discrete AdaBoost: // weak_eval[i] (=f(x_i)) is in {-1,1} // err = sum(w_i*(f(x_i) != y_i))/sum(w_i) // C = log((1-err)/err) // w_i *= exp(C*(f(x_i) != y_i)) double err = 0.; for( i = 0; i < n; i++ ) { int si = w->sidx[i]; double wval = w->sample_weights[si]; sumw += wval; err += wval*(result[i] != w->cat_responses[si]); } if( sumw != 0 ) err /= sumw; C = -log_ratio( err ); double scale = std::exp(C); sumw = 0; for( i = 0; i < n; i++ ) { int si = w->sidx[i]; double wval = w->sample_weights[si]; if( result[i] != w->cat_responses[si] ) wval *= scale; sumw += wval; w->sample_weights[si] = wval; } scaleTree(roots[treeidx], C); } else if( bparams.boostType == Boost::REAL || bparams.boostType == Boost::GENTLE ) { // Real AdaBoost: // weak_eval[i] = f(x_i) = 0.5*log(p(x_i)/(1-p(x_i))), p(x_i)=P(y=1|x_i) // w_i *= exp(-y_i*f(x_i)) // Gentle AdaBoost: // weak_eval[i] = f(x_i) in [-1,1] // w_i *= exp(-y_i*f(x_i)) for( i = 0; i < n; i++ ) { int si = w->sidx[i]; CV_Assert( std::abs(w->ord_responses[si]) == 1 ); double wval = w->sample_weights[si]*std::exp(-result[i]*w->ord_responses[si]); sumw += wval; w->sample_weights[si] = wval; } } else if( bparams.boostType == Boost::LOGIT ) { // LogitBoost: // weak_eval[i] = f(x_i) in [-z_max,z_max] // sum_response = F(x_i). // F(x_i) += 0.5*f(x_i) // p(x_i) = exp(F(x_i))/(exp(F(x_i)) + exp(-F(x_i))=1/(1+exp(-2*F(x_i))) // reuse weak_eval: weak_eval[i] <- p(x_i) // w_i = p(x_i)*1(1 - p(x_i)) // z_i = ((y_i+1)/2 - p(x_i))/(p(x_i)*(1 - p(x_i))) // store z_i to the data->data_root as the new target responses const double lb_weight_thresh = FLT_EPSILON; const double lb_z_max = 10.; for( i = 0; i < n; i++ ) { int si = w->sidx[i]; sumResult[i] += 0.5*result[i]; double p = 1./(1 + std::exp(-2*sumResult[i])); double wval = std::max( p*(1 - p), lb_weight_thresh ), z; w->sample_weights[si] = wval; sumw += wval; if( w->ord_responses[si] > 0 ) { z = 1./p; w->ord_responses[si] = std::min(z, lb_z_max); } else { z = 1./(1-p); w->ord_responses[si] = -std::min(z, lb_z_max); } } } else CV_Error(CV_StsNotImplemented, "Unknown boosting type"); /*if( bparams.boostType != Boost::LOGIT ) { double err = 0; for( i = 0; i < n; i++ ) { sumResult[i] += result[i]*C; if( bparams.boostType != Boost::DISCRETE ) err += sumResult[i]*w->ord_responses[w->sidx[i]] < 0; else err += sumResult[i]*w->cat_responses[w->sidx[i]] < 0; } printf("%d trees. C=%.2f, training error=%.1f%%, working set size=%d (out of %d)\n", (int)roots.size(), C, err*100./n, (int)sidx.size(), n); }*/ // renormalize weights if( sumw > FLT_EPSILON ) normalizeWeights(); if( bparams.weightTrimRate <= 0. || bparams.weightTrimRate >= 1. ) return; for( i = 0; i < n; i++ ) result[i] = w->sample_weights[w->sidx[i]]; std::sort(result, result + n); // as weight trimming occurs immediately after updating the weights, // where they are renormalized, we assume that the weight sum = 1. sumw = 1. - bparams.weightTrimRate; for( i = 0; i < n; i++ ) { double wval = result[i]; if( sumw <= 0 ) break; sumw -= wval; } double threshold = i < n ? result[i] : DBL_MAX; sidx.clear(); for( i = 0; i < n; i++ ) { int si = w->sidx[i]; if( w->sample_weights[si] >= threshold ) sidx.push_back(si); } } float predictTrees( const Range& range, const Mat& sample, int flags0 ) const CV_OVERRIDE { int flags = (flags0 & ~PREDICT_MASK) | PREDICT_SUM; float val = DTreesImpl::predictTrees(range, sample, flags); if( flags != flags0 ) { int ival = (int)(val > 0); if( !(flags0 & RAW_OUTPUT) ) ival = classLabels[ival]; val = (float)ival; } return val; } void writeTrainingParams( FileStorage& fs ) const CV_OVERRIDE { fs << "boosting_type" << (bparams.boostType == Boost::DISCRETE ? "DiscreteAdaboost" : bparams.boostType == Boost::REAL ? "RealAdaboost" : bparams.boostType == Boost::LOGIT ? "LogitBoost" : bparams.boostType == Boost::GENTLE ? "GentleAdaboost" : "Unknown"); DTreesImpl::writeTrainingParams(fs); fs << "weight_trimming_rate" << bparams.weightTrimRate; } void write( FileStorage& fs ) const CV_OVERRIDE { if( roots.empty() ) CV_Error( CV_StsBadArg, "RTrees have not been trained" ); writeFormat(fs); writeParams(fs); int k, ntrees = (int)roots.size(); fs << "ntrees" << ntrees << "trees" << "["; for( k = 0; k < ntrees; k++ ) { fs << "{"; writeTree(fs, roots[k]); fs << "}"; } fs << "]"; } void readParams( const FileNode& fn ) CV_OVERRIDE { DTreesImpl::readParams(fn); FileNode tparams_node = fn["training_params"]; // check for old layout String bts = (String)(fn["boosting_type"].empty() ? tparams_node["boosting_type"] : fn["boosting_type"]); bparams.boostType = (bts == "DiscreteAdaboost" ? Boost::DISCRETE : bts == "RealAdaboost" ? Boost::REAL : bts == "LogitBoost" ? Boost::LOGIT : bts == "GentleAdaboost" ? Boost::GENTLE : -1); _isClassifier = bparams.boostType == Boost::DISCRETE; // check for old layout bparams.weightTrimRate = (double)(fn["weight_trimming_rate"].empty() ? tparams_node["weight_trimming_rate"] : fn["weight_trimming_rate"]); } void read( const FileNode& fn ) CV_OVERRIDE { clear(); int ntrees = (int)fn["ntrees"]; readParams(fn); FileNode trees_node = fn["trees"]; FileNodeIterator it = trees_node.begin(); CV_Assert( ntrees == (int)trees_node.size() ); for( int treeidx = 0; treeidx < ntrees; treeidx++, ++it ) { FileNode nfn = (*it)["nodes"]; readTree(nfn); } } BoostTreeParams bparams; vector sumResult; }; class BoostImpl : public Boost { public: BoostImpl() {} virtual ~BoostImpl() {} inline int getBoostType() const CV_OVERRIDE { return impl.bparams.boostType; } inline void setBoostType(int val) CV_OVERRIDE { impl.bparams.boostType = val; } inline int getWeakCount() const CV_OVERRIDE { return impl.bparams.weakCount; } inline void setWeakCount(int val) CV_OVERRIDE { impl.bparams.weakCount = val; } inline double getWeightTrimRate() const CV_OVERRIDE { return impl.bparams.weightTrimRate; } inline void setWeightTrimRate(double val) CV_OVERRIDE { impl.bparams.weightTrimRate = val; } inline int getMaxCategories() const CV_OVERRIDE { return impl.params.getMaxCategories(); } inline void setMaxCategories(int val) CV_OVERRIDE { impl.params.setMaxCategories(val); } inline int getMaxDepth() const CV_OVERRIDE { return impl.params.getMaxDepth(); } inline void setMaxDepth(int val) CV_OVERRIDE { impl.params.setMaxDepth(val); } inline int getMinSampleCount() const CV_OVERRIDE { return impl.params.getMinSampleCount(); } inline void setMinSampleCount(int val) CV_OVERRIDE { impl.params.setMinSampleCount(val); } inline int getCVFolds() const CV_OVERRIDE { return impl.params.getCVFolds(); } inline void setCVFolds(int val) CV_OVERRIDE { impl.params.setCVFolds(val); } inline bool getUseSurrogates() const CV_OVERRIDE { return impl.params.getUseSurrogates(); } inline void setUseSurrogates(bool val) CV_OVERRIDE { impl.params.setUseSurrogates(val); } inline bool getUse1SERule() const CV_OVERRIDE { return impl.params.getUse1SERule(); } inline void setUse1SERule(bool val) CV_OVERRIDE { impl.params.setUse1SERule(val); } inline bool getTruncatePrunedTree() const CV_OVERRIDE { return impl.params.getTruncatePrunedTree(); } inline void setTruncatePrunedTree(bool val) CV_OVERRIDE { impl.params.setTruncatePrunedTree(val); } inline float getRegressionAccuracy() const CV_OVERRIDE { return impl.params.getRegressionAccuracy(); } inline void setRegressionAccuracy(float val) CV_OVERRIDE { impl.params.setRegressionAccuracy(val); } inline cv::Mat getPriors() const CV_OVERRIDE { return impl.params.getPriors(); } inline void setPriors(const cv::Mat& val) CV_OVERRIDE { impl.params.setPriors(val); } String getDefaultName() const CV_OVERRIDE { return "opencv_ml_boost"; } bool train( const Ptr& trainData, int flags ) CV_OVERRIDE { return impl.train(trainData, flags); } float predict( InputArray samples, OutputArray results, int flags ) const CV_OVERRIDE { return impl.predict(samples, results, flags); } void write( FileStorage& fs ) const CV_OVERRIDE { impl.write(fs); } void read( const FileNode& fn ) CV_OVERRIDE { impl.read(fn); } int getVarCount() const CV_OVERRIDE { return impl.getVarCount(); } bool isTrained() const CV_OVERRIDE { return impl.isTrained(); } bool isClassifier() const CV_OVERRIDE { return impl.isClassifier(); } const vector& getRoots() const CV_OVERRIDE { return impl.getRoots(); } const vector& getNodes() const CV_OVERRIDE { return impl.getNodes(); } const vector& getSplits() const CV_OVERRIDE { return impl.getSplits(); } const vector& getSubsets() const CV_OVERRIDE { return impl.getSubsets(); } DTreesImplForBoost impl; }; Ptr Boost::create() { return makePtr(); } Ptr Boost::load(const String& filepath, const String& nodeName) { return Algorithm::load(filepath, nodeName); } }} /* End of file. */