from __future__ import print_function import sys import argparse import cv2 as cv import tensorflow as tf import numpy as np import struct if sys.version_info > (3,): long = int from tensorflow.python.tools import optimize_for_inference_lib from tensorflow.tools.graph_transforms import TransformGraph from tensorflow.core.framework.node_def_pb2 import NodeDef from google.protobuf import text_format parser = argparse.ArgumentParser(description="Use this script to create TensorFlow graph " "with weights from OpenCV's face detection network. " "Only backbone part of SSD model is converted this way. " "Look for .pbtxt configuration file at " "https://github.com/opencv/opencv_extra/tree/3.4/testdata/dnn/opencv_face_detector.pbtxt") parser.add_argument('--model', help='Path to .caffemodel weights', required=True) parser.add_argument('--proto', help='Path to .prototxt Caffe model definition', required=True) parser.add_argument('--pb', help='Path to output .pb TensorFlow model', required=True) parser.add_argument('--pbtxt', help='Path to output .pbxt TensorFlow graph', required=True) parser.add_argument('--quantize', help='Quantize weights to uint8', action='store_true') parser.add_argument('--fp16', help='Convert weights to half precision floats', action='store_true') args = parser.parse_args() assert(not args.quantize or not args.fp16) dtype = tf.float16 if args.fp16 else tf.float32 ################################################################################ cvNet = cv.dnn.readNetFromCaffe(args.proto, args.model) def dnnLayer(name): return cvNet.getLayer(long(cvNet.getLayerId(name))) def scale(x, name): with tf.variable_scope(name): layer = dnnLayer(name) w = tf.Variable(layer.blobs[0].flatten(), dtype=dtype, name='mul') if len(layer.blobs) > 1: b = tf.Variable(layer.blobs[1].flatten(), dtype=dtype, name='add') return tf.nn.bias_add(tf.multiply(x, w), b) else: return tf.multiply(x, w, name) def conv(x, name, stride=1, pad='SAME', dilation=1, activ=None): with tf.variable_scope(name): layer = dnnLayer(name) w = tf.Variable(layer.blobs[0].transpose(2, 3, 1, 0), dtype=dtype, name='weights') if dilation == 1: conv = tf.nn.conv2d(x, filter=w, strides=(1, stride, stride, 1), padding=pad) else: assert(stride == 1) conv = tf.nn.atrous_conv2d(x, w, rate=dilation, padding=pad) if len(layer.blobs) > 1: b = tf.Variable(layer.blobs[1].flatten(), dtype=dtype, name='bias') conv = tf.nn.bias_add(conv, b) return activ(conv) if activ else conv def batch_norm(x, name): with tf.variable_scope(name): # Unfortunately, TensorFlow's batch normalization layer doesn't work with fp16 input. # Here we do a cast to fp32 but remove it in the frozen graph. if x.dtype != tf.float32: x = tf.cast(x, tf.float32) layer = dnnLayer(name) assert(len(layer.blobs) >= 3) mean = layer.blobs[0].flatten() std = layer.blobs[1].flatten() scale = layer.blobs[2].flatten() eps = 1e-5 hasBias = len(layer.blobs) > 3 hasWeights = scale.shape != (1,) if not hasWeights and not hasBias: mean /= scale[0] std /= scale[0] mean = tf.Variable(mean, dtype=tf.float32, name='mean') std = tf.Variable(std, dtype=tf.float32, name='std') gamma = tf.Variable(scale if hasWeights else np.ones(mean.shape), dtype=tf.float32, name='gamma') beta = tf.Variable(layer.blobs[3].flatten() if hasBias else np.zeros(mean.shape), dtype=tf.float32, name='beta') bn = tf.nn.fused_batch_norm(x, gamma, beta, mean, std, eps, is_training=False)[0] if bn.dtype != dtype: bn = tf.cast(bn, dtype) return bn def l2norm(x, name): with tf.variable_scope(name): layer = dnnLayer(name) w = tf.Variable(layer.blobs[0].flatten(), dtype=dtype, name='mul') return tf.nn.l2_normalize(x, 3, epsilon=1e-10) * w ### Graph definition ########################################################### inp = tf.placeholder(dtype, [1, 300, 300, 3], 'data') data_bn = batch_norm(inp, 'data_bn') data_scale = scale(data_bn, 'data_scale') # Instead of tf.pad we use tf.space_to_batch_nd layers which override convolution's padding strategy to explicit numbers # data_scale = tf.pad(data_scale, [[0, 0], [3, 3], [3, 3], [0, 0]]) data_scale = tf.space_to_batch_nd(data_scale, [1, 1], [[3, 3], [3, 3]], name='Pad') conv1_h = conv(data_scale, stride=2, pad='VALID', name='conv1_h') conv1_bn_h = batch_norm(conv1_h, 'conv1_bn_h') conv1_scale_h = scale(conv1_bn_h, 'conv1_scale_h') conv1_relu = tf.nn.relu(conv1_scale_h) conv1_pool = tf.layers.max_pooling2d(conv1_relu, pool_size=(3, 3), strides=(2, 2), padding='SAME', name='conv1_pool') layer_64_1_conv1_h = conv(conv1_pool, 'layer_64_1_conv1_h') layer_64_1_bn2_h = batch_norm(layer_64_1_conv1_h, 'layer_64_1_bn2_h') layer_64_1_scale2_h = scale(layer_64_1_bn2_h, 'layer_64_1_scale2_h') layer_64_1_relu2 = tf.nn.relu(layer_64_1_scale2_h) layer_64_1_conv2_h = conv(layer_64_1_relu2, 'layer_64_1_conv2_h') layer_64_1_sum = layer_64_1_conv2_h + conv1_pool layer_128_1_bn1_h = batch_norm(layer_64_1_sum, 'layer_128_1_bn1_h') layer_128_1_scale1_h = scale(layer_128_1_bn1_h, 'layer_128_1_scale1_h') layer_128_1_relu1 = tf.nn.relu(layer_128_1_scale1_h) layer_128_1_conv1_h = conv(layer_128_1_relu1, stride=2, name='layer_128_1_conv1_h') layer_128_1_bn2 = batch_norm(layer_128_1_conv1_h, 'layer_128_1_bn2') layer_128_1_scale2 = scale(layer_128_1_bn2, 'layer_128_1_scale2') layer_128_1_relu2 = tf.nn.relu(layer_128_1_scale2) layer_128_1_conv2 = conv(layer_128_1_relu2, 'layer_128_1_conv2') layer_128_1_conv_expand_h = conv(layer_128_1_relu1, stride=2, name='layer_128_1_conv_expand_h') layer_128_1_sum = layer_128_1_conv2 + layer_128_1_conv_expand_h layer_256_1_bn1 = batch_norm(layer_128_1_sum, 'layer_256_1_bn1') layer_256_1_scale1 = scale(layer_256_1_bn1, 'layer_256_1_scale1') layer_256_1_relu1 = tf.nn.relu(layer_256_1_scale1) # layer_256_1_conv1 = tf.pad(layer_256_1_relu1, [[0, 0], [1, 1], [1, 1], [0, 0]]) layer_256_1_conv1 = tf.space_to_batch_nd(layer_256_1_relu1, [1, 1], [[1, 1], [1, 1]], name='Pad_1') layer_256_1_conv1 = conv(layer_256_1_conv1, stride=2, pad='VALID', name='layer_256_1_conv1') layer_256_1_bn2 = batch_norm(layer_256_1_conv1, 'layer_256_1_bn2') layer_256_1_scale2 = scale(layer_256_1_bn2, 'layer_256_1_scale2') layer_256_1_relu2 = tf.nn.relu(layer_256_1_scale2) layer_256_1_conv2 = conv(layer_256_1_relu2, 'layer_256_1_conv2') layer_256_1_conv_expand = conv(layer_256_1_relu1, stride=2, name='layer_256_1_conv_expand') layer_256_1_sum = layer_256_1_conv2 + layer_256_1_conv_expand layer_512_1_bn1 = batch_norm(layer_256_1_sum, 'layer_512_1_bn1') layer_512_1_scale1 = scale(layer_512_1_bn1, 'layer_512_1_scale1') layer_512_1_relu1 = tf.nn.relu(layer_512_1_scale1) layer_512_1_conv1_h = conv(layer_512_1_relu1, 'layer_512_1_conv1_h') layer_512_1_bn2_h = batch_norm(layer_512_1_conv1_h, 'layer_512_1_bn2_h') layer_512_1_scale2_h = scale(layer_512_1_bn2_h, 'layer_512_1_scale2_h') layer_512_1_relu2 = tf.nn.relu(layer_512_1_scale2_h) layer_512_1_conv2_h = conv(layer_512_1_relu2, dilation=2, name='layer_512_1_conv2_h') layer_512_1_conv_expand_h = conv(layer_512_1_relu1, 'layer_512_1_conv_expand_h') layer_512_1_sum = layer_512_1_conv2_h + layer_512_1_conv_expand_h last_bn_h = batch_norm(layer_512_1_sum, 'last_bn_h') last_scale_h = scale(last_bn_h, 'last_scale_h') fc7 = tf.nn.relu(last_scale_h, name='last_relu') conv6_1_h = conv(fc7, 'conv6_1_h', activ=tf.nn.relu) conv6_2_h = conv(conv6_1_h, stride=2, name='conv6_2_h', activ=tf.nn.relu) conv7_1_h = conv(conv6_2_h, 'conv7_1_h', activ=tf.nn.relu) # conv7_2_h = tf.pad(conv7_1_h, [[0, 0], [1, 1], [1, 1], [0, 0]]) conv7_2_h = tf.space_to_batch_nd(conv7_1_h, [1, 1], [[1, 1], [1, 1]], name='Pad_2') conv7_2_h = conv(conv7_2_h, stride=2, pad='VALID', name='conv7_2_h', activ=tf.nn.relu) conv8_1_h = conv(conv7_2_h, pad='SAME', name='conv8_1_h', activ=tf.nn.relu) conv8_2_h = conv(conv8_1_h, pad='VALID', name='conv8_2_h', activ=tf.nn.relu) conv9_1_h = conv(conv8_2_h, 'conv9_1_h', activ=tf.nn.relu) conv9_2_h = conv(conv9_1_h, pad='VALID', name='conv9_2_h', activ=tf.nn.relu) conv4_3_norm = l2norm(layer_256_1_relu1, 'conv4_3_norm') ### Locations and confidences ################################################## locations = [] confidences = [] flattenLayersNames = [] # Collect all reshape layers names that should be replaced to flattens. for top, suffix in zip([locations, confidences], ['_mbox_loc', '_mbox_conf']): for bottom, name in zip([conv4_3_norm, fc7, conv6_2_h, conv7_2_h, conv8_2_h, conv9_2_h], ['conv4_3_norm', 'fc7', 'conv6_2', 'conv7_2', 'conv8_2', 'conv9_2']): name += suffix flat = tf.layers.flatten(conv(bottom, name)) flattenLayersNames.append(flat.name[:flat.name.find(':')]) top.append(flat) mbox_loc = tf.concat(locations, axis=-1, name='mbox_loc') mbox_conf = tf.concat(confidences, axis=-1, name='mbox_conf') total = int(np.prod(mbox_conf.shape[1:])) mbox_conf_reshape = tf.reshape(mbox_conf, [-1, 2], name='mbox_conf_reshape') mbox_conf_softmax = tf.nn.softmax(mbox_conf_reshape, name='mbox_conf_softmax') mbox_conf_flatten = tf.reshape(mbox_conf_softmax, [-1, total], name='mbox_conf_flatten') flattenLayersNames.append('mbox_conf_flatten') with tf.Session() as sess: sess.run(tf.global_variables_initializer()) ### Check correctness ###################################################### out_nodes = ['mbox_loc', 'mbox_conf_flatten'] inp_nodes = [inp.name[:inp.name.find(':')]] np.random.seed(2701) inputData = np.random.standard_normal([1, 3, 300, 300]).astype(np.float32) cvNet.setInput(inputData) cvNet.setPreferableBackend(cv.dnn.DNN_BACKEND_OPENCV) outDNN = cvNet.forward(out_nodes) outTF = sess.run([mbox_loc, mbox_conf_flatten], feed_dict={inp: inputData.transpose(0, 2, 3, 1)}) print('Max diff @ locations: %e' % np.max(np.abs(outDNN[0] - outTF[0]))) print('Max diff @ confidence: %e' % np.max(np.abs(outDNN[1] - outTF[1]))) # Save a graph graph_def = sess.graph.as_graph_def() # Freeze graph. Replaces variables to constants. graph_def = tf.graph_util.convert_variables_to_constants(sess, graph_def, out_nodes) # Optimize graph. Removes training-only ops, unused nodes. graph_def = optimize_for_inference_lib.optimize_for_inference(graph_def, inp_nodes, out_nodes, dtype.as_datatype_enum) # Fuse constant operations. transforms = ["fold_constants(ignore_errors=True)"] if args.quantize: transforms += ["quantize_weights(minimum_size=0)"] transforms += ["sort_by_execution_order"] graph_def = TransformGraph(graph_def, inp_nodes, out_nodes, transforms) # By default, float16 weights are stored in repeated tensor's field called # `half_val`. It has type int32 with leading zeros for unused bytes. # This type is encoded by Variant that means only 7 bits are used for value # representation but the last one is indicated the end of encoding. This way # float16 might takes 1 or 2 or 3 bytes depends on value. To improve compression, # we replace all `half_val` values to `tensor_content` using only 2 bytes for everyone. for node in graph_def.node: if 'value' in node.attr: halfs = node.attr["value"].tensor.half_val if not node.attr["value"].tensor.tensor_content and halfs: node.attr["value"].tensor.tensor_content = struct.pack('H' * len(halfs), *halfs) node.attr["value"].tensor.ClearField('half_val') # Serialize with tf.gfile.FastGFile(args.pb, 'wb') as f: f.write(graph_def.SerializeToString()) ################################################################################ # Write a text graph representation ################################################################################ def tensorMsg(values): msg = 'tensor { dtype: DT_FLOAT tensor_shape { dim { size: %d } }' % len(values) for value in values: msg += 'float_val: %f ' % value return msg + '}' # Remove Const nodes and unused attributes. for i in reversed(range(len(graph_def.node))): if graph_def.node[i].op in ['Const', 'Dequantize']: del graph_def.node[i] for attr in ['T', 'data_format', 'Tshape', 'N', 'Tidx', 'Tdim', 'use_cudnn_on_gpu', 'Index', 'Tperm', 'is_training', 'Tpaddings', 'Tblock_shape', 'Tcrops']: if attr in graph_def.node[i].attr: del graph_def.node[i].attr[attr] # Append prior box generators min_sizes = [30, 60, 111, 162, 213, 264] max_sizes = [60, 111, 162, 213, 264, 315] steps = [8, 16, 32, 64, 100, 300] aspect_ratios = [[2], [2, 3], [2, 3], [2, 3], [2], [2]] layers = [conv4_3_norm, fc7, conv6_2_h, conv7_2_h, conv8_2_h, conv9_2_h] for i in range(6): priorBox = NodeDef() priorBox.name = 'PriorBox_%d' % i priorBox.op = 'PriorBox' priorBox.input.append(layers[i].name[:layers[i].name.find(':')]) priorBox.input.append(inp_nodes[0]) # data text_format.Merge('i: %d' % min_sizes[i], priorBox.attr["min_size"]) text_format.Merge('i: %d' % max_sizes[i], priorBox.attr["max_size"]) text_format.Merge('b: true', priorBox.attr["flip"]) text_format.Merge('b: false', priorBox.attr["clip"]) text_format.Merge(tensorMsg(aspect_ratios[i]), priorBox.attr["aspect_ratio"]) text_format.Merge(tensorMsg([0.1, 0.1, 0.2, 0.2]), priorBox.attr["variance"]) text_format.Merge('f: %f' % steps[i], priorBox.attr["step"]) text_format.Merge('f: 0.5', priorBox.attr["offset"]) graph_def.node.extend([priorBox]) # Concatenate prior boxes concat = NodeDef() concat.name = 'mbox_priorbox' concat.op = 'ConcatV2' for i in range(6): concat.input.append('PriorBox_%d' % i) concat.input.append('mbox_loc/axis') graph_def.node.extend([concat]) # DetectionOutput layer detectionOut = NodeDef() detectionOut.name = 'detection_out' detectionOut.op = 'DetectionOutput' detectionOut.input.append('mbox_loc') detectionOut.input.append('mbox_conf_flatten') detectionOut.input.append('mbox_priorbox') text_format.Merge('i: 2', detectionOut.attr['num_classes']) text_format.Merge('b: true', detectionOut.attr['share_location']) text_format.Merge('i: 0', detectionOut.attr['background_label_id']) text_format.Merge('f: 0.45', detectionOut.attr['nms_threshold']) text_format.Merge('i: 400', detectionOut.attr['top_k']) text_format.Merge('s: "CENTER_SIZE"', detectionOut.attr['code_type']) text_format.Merge('i: 200', detectionOut.attr['keep_top_k']) text_format.Merge('f: 0.01', detectionOut.attr['confidence_threshold']) graph_def.node.extend([detectionOut]) # Replace L2Normalization subgraph onto a single node. for i in reversed(range(len(graph_def.node))): if graph_def.node[i].name in ['conv4_3_norm/l2_normalize/Square', 'conv4_3_norm/l2_normalize/Sum', 'conv4_3_norm/l2_normalize/Maximum', 'conv4_3_norm/l2_normalize/Rsqrt']: del graph_def.node[i] for node in graph_def.node: if node.name == 'conv4_3_norm/l2_normalize': node.op = 'L2Normalize' node.input.pop() node.input.pop() node.input.append(layer_256_1_relu1.name) node.input.append('conv4_3_norm/l2_normalize/Sum/reduction_indices') break softmaxShape = NodeDef() softmaxShape.name = 'reshape_before_softmax' softmaxShape.op = 'Const' text_format.Merge( 'tensor {' ' dtype: DT_INT32' ' tensor_shape { dim { size: 3 } }' ' int_val: 0' ' int_val: -1' ' int_val: 2' '}', softmaxShape.attr["value"]) graph_def.node.extend([softmaxShape]) for node in graph_def.node: if node.name == 'mbox_conf_reshape': node.input[1] = softmaxShape.name elif node.name == 'mbox_conf_softmax': text_format.Merge('i: 2', node.attr['axis']) elif node.name in flattenLayersNames: node.op = 'Flatten' inpName = node.input[0] node.input.pop() node.input.pop() node.input.append(inpName) tf.train.write_graph(graph_def, "", args.pbtxt, as_text=True)