#include "precomp.hpp" namespace cv { namespace viz { template Vec<_Tp, 3>* vtkpoints_data(vtkSmartPointer& points); } } /////////////////////////////////////////////////////////////////////////////////////////////// /// line widget implementation cv::viz::LineWidget::LineWidget(const Point3f &pt1, const Point3f &pt2, const Color &color) { vtkSmartPointer line = vtkSmartPointer::New(); line->SetPoint1 (pt1.x, pt1.y, pt1.z); line->SetPoint2 (pt2.x, pt2.y, pt2.z); line->Update (); vtkSmartPointer mapper = vtkSmartPointer::New (); mapper->SetInput(line->GetOutput ()); vtkSmartPointer actor = vtkSmartPointer::New(); actor->SetMapper(mapper); WidgetAccessor::setProp(*this, actor); setColor(color); } void cv::viz::LineWidget::setLineWidth(float line_width) { vtkActor *actor = vtkActor::SafeDownCast(WidgetAccessor::getProp(*this)); CV_Assert(actor); actor->GetProperty()->SetLineWidth(line_width); } float cv::viz::LineWidget::getLineWidth() { vtkActor *actor = vtkActor::SafeDownCast(WidgetAccessor::getProp(*this)); CV_Assert(actor); return actor->GetProperty()->GetLineWidth(); } template<> cv::viz::LineWidget cv::viz::Widget::cast() { Widget3D widget = this->cast(); return static_cast(widget); } /////////////////////////////////////////////////////////////////////////////////////////////// /// plane widget implementation cv::viz::PlaneWidget::PlaneWidget(const Vec4f& coefs, double size, const Color &color) { vtkSmartPointer plane = vtkSmartPointer::New (); plane->SetNormal (coefs[0], coefs[1], coefs[2]); double norm = cv::norm(Vec3f(coefs.val)); plane->Push (-coefs[3] / norm); vtkSmartPointer mapper = vtkSmartPointer::New (); mapper->SetInput(plane->GetOutput ()); vtkSmartPointer actor = vtkSmartPointer::New(); actor->SetMapper(mapper); actor->SetScale(size); WidgetAccessor::setProp(*this, actor); setColor(color); } cv::viz::PlaneWidget::PlaneWidget(const Vec4f& coefs, const Point3f& pt, double size, const Color &color) { vtkSmartPointer plane = vtkSmartPointer::New (); Point3f coefs3(coefs[0], coefs[1], coefs[2]); double norm_sqr = 1.0 / coefs3.dot (coefs3); plane->SetNormal(coefs[0], coefs[1], coefs[2]); double t = coefs3.dot(pt) + coefs[3]; Vec3f p_center = pt - coefs3 * t * norm_sqr; plane->SetCenter (p_center[0], p_center[1], p_center[2]); vtkSmartPointer mapper = vtkSmartPointer::New (); mapper->SetInput(plane->GetOutput ()); vtkSmartPointer actor = vtkSmartPointer::New(); actor->SetMapper(mapper); actor->SetScale(size); WidgetAccessor::setProp(*this, actor); setColor(color); } template<> cv::viz::PlaneWidget cv::viz::Widget::cast() { Widget3D widget = this->cast(); return static_cast(widget); } /////////////////////////////////////////////////////////////////////////////////////////////// /// sphere widget implementation cv::viz::SphereWidget::SphereWidget(const Point3f ¢er, float radius, int sphere_resolution, const Color &color) { vtkSmartPointer sphere = vtkSmartPointer::New (); sphere->SetRadius (radius); sphere->SetCenter (center.x, center.y, center.z); sphere->SetPhiResolution (sphere_resolution); sphere->SetThetaResolution (sphere_resolution); sphere->LatLongTessellationOff (); sphere->Update (); vtkSmartPointer mapper = vtkSmartPointer::New (); mapper->SetInput(sphere->GetOutput ()); vtkSmartPointer actor = vtkSmartPointer::New(); actor->SetMapper(mapper); WidgetAccessor::setProp(*this, actor); setColor(color); } template<> cv::viz::SphereWidget cv::viz::Widget::cast() { Widget3D widget = this->cast(); return static_cast(widget); } /////////////////////////////////////////////////////////////////////////////////////////////// /// arrow widget implementation cv::viz::ArrowWidget::ArrowWidget(const Point3f& pt1, const Point3f& pt2, double thickness, const Color &color) { vtkSmartPointer arrowSource = vtkSmartPointer::New (); arrowSource->SetShaftRadius(thickness); // The thickness and radius of the tip are adjusted based on the thickness of the arrow arrowSource->SetTipRadius(thickness * 3.0); arrowSource->SetTipLength(thickness * 10.0); float startPoint[3], endPoint[3]; startPoint[0] = pt1.x; startPoint[1] = pt1.y; startPoint[2] = pt1.z; endPoint[0] = pt2.x; endPoint[1] = pt2.y; endPoint[2] = pt2.z; float normalizedX[3], normalizedY[3], normalizedZ[3]; // The X axis is a vector from start to end vtkMath::Subtract(endPoint, startPoint, normalizedX); float length = vtkMath::Norm(normalizedX); vtkMath::Normalize(normalizedX); // The Z axis is an arbitrary vecotr cross X float arbitrary[3]; arbitrary[0] = vtkMath::Random(-10,10); arbitrary[1] = vtkMath::Random(-10,10); arbitrary[2] = vtkMath::Random(-10,10); vtkMath::Cross(normalizedX, arbitrary, normalizedZ); vtkMath::Normalize(normalizedZ); // The Y axis is Z cross X vtkMath::Cross(normalizedZ, normalizedX, normalizedY); vtkSmartPointer matrix = vtkSmartPointer::New(); // Create the direction cosine matrix matrix->Identity(); for (unsigned int i = 0; i < 3; i++) { matrix->SetElement(i, 0, normalizedX[i]); matrix->SetElement(i, 1, normalizedY[i]); matrix->SetElement(i, 2, normalizedZ[i]); } // Apply the transforms vtkSmartPointer transform = vtkSmartPointer::New(); transform->Translate(startPoint); transform->Concatenate(matrix); transform->Scale(length, length, length); // Transform the polydata vtkSmartPointer transformPD = vtkSmartPointer::New(); transformPD->SetTransform(transform); transformPD->SetInputConnection(arrowSource->GetOutputPort()); vtkSmartPointer mapper = vtkSmartPointer::New (); mapper->SetInput(transformPD->GetOutput ()); vtkSmartPointer actor = vtkSmartPointer::New(); actor->SetMapper(mapper); WidgetAccessor::setProp(*this, actor); setColor(color); } template<> cv::viz::ArrowWidget cv::viz::Widget::cast() { Widget3D widget = this->cast(); return static_cast(widget); } /////////////////////////////////////////////////////////////////////////////////////////////// /// circle widget implementation cv::viz::CircleWidget::CircleWidget(const Point3f& pt, double radius, double thickness, const Color& color) { vtkSmartPointer disk = vtkSmartPointer::New (); // Maybe the resolution should be lower e.g. 50 or 25 disk->SetCircumferentialResolution (50); disk->SetInnerRadius (radius - thickness); disk->SetOuterRadius (radius + thickness); // Set the circle origin vtkSmartPointer t = vtkSmartPointer::New (); t->Identity (); t->Translate (pt.x, pt.y, pt.z); vtkSmartPointer tf = vtkSmartPointer::New (); tf->SetTransform (t); tf->SetInputConnection (disk->GetOutputPort ()); vtkSmartPointer mapper = vtkSmartPointer::New (); mapper->SetInput(tf->GetOutput ()); vtkSmartPointer actor = vtkSmartPointer::New(); actor->SetMapper(mapper); WidgetAccessor::setProp(*this, actor); setColor(color); } template<> cv::viz::CircleWidget cv::viz::Widget::cast() { Widget3D widget = this->cast(); return static_cast(widget); } /////////////////////////////////////////////////////////////////////////////////////////////// /// cylinder widget implementation cv::viz::CylinderWidget::CylinderWidget(const Point3f& pt_on_axis, const Point3f& axis_direction, double radius, int numsides, const Color &color) { const Point3f pt2 = pt_on_axis + axis_direction; vtkSmartPointer line = vtkSmartPointer::New (); line->SetPoint1 (pt_on_axis.x, pt_on_axis.y, pt_on_axis.z); line->SetPoint2 (pt2.x, pt2.y, pt2.z); vtkSmartPointer tuber = vtkSmartPointer::New (); tuber->SetInputConnection (line->GetOutputPort ()); tuber->SetRadius (radius); tuber->SetNumberOfSides (numsides); vtkSmartPointer mapper = vtkSmartPointer::New (); mapper->SetInput(tuber->GetOutput ()); vtkSmartPointer actor = vtkSmartPointer::New (); actor->SetMapper(mapper); WidgetAccessor::setProp(*this, actor); setColor(color); } template<> cv::viz::CylinderWidget cv::viz::Widget::cast() { Widget3D widget = this->cast(); return static_cast(widget); } /////////////////////////////////////////////////////////////////////////////////////////////// /// cylinder widget implementation cv::viz::CubeWidget::CubeWidget(const Point3f& pt_min, const Point3f& pt_max, bool wire_frame, const Color &color) { vtkSmartPointer mapper = vtkSmartPointer::New (); if (wire_frame) { vtkSmartPointer cube = vtkSmartPointer::New(); cube->SetBounds (pt_min.x, pt_max.x, pt_min.y, pt_max.y, pt_min.z, pt_max.z); mapper->SetInput(cube->GetOutput ()); } else { vtkSmartPointer cube = vtkSmartPointer::New (); cube->SetBounds (pt_min.x, pt_max.x, pt_min.y, pt_max.y, pt_min.z, pt_max.z); mapper->SetInput(cube->GetOutput ()); } vtkSmartPointer actor = vtkSmartPointer::New(); actor->SetMapper(mapper); WidgetAccessor::setProp(*this, actor); setColor(color); } template<> cv::viz::CubeWidget cv::viz::Widget::cast() { Widget3D widget = this->cast(); return static_cast(widget); } /////////////////////////////////////////////////////////////////////////////////////////////// /// coordinate system widget implementation cv::viz::CoordinateSystemWidget::CoordinateSystemWidget(double scale) { vtkSmartPointer axes = vtkSmartPointer::New (); axes->SetOrigin (0, 0, 0); axes->SetScaleFactor (scale); vtkSmartPointer axes_colors = vtkSmartPointer::New (); axes_colors->Allocate (6); axes_colors->InsertNextValue (0.0); axes_colors->InsertNextValue (0.0); axes_colors->InsertNextValue (0.5); axes_colors->InsertNextValue (0.5); axes_colors->InsertNextValue (1.0); axes_colors->InsertNextValue (1.0); vtkSmartPointer axes_data = axes->GetOutput (); axes_data->Update (); axes_data->GetPointData ()->SetScalars (axes_colors); vtkSmartPointer axes_tubes = vtkSmartPointer::New (); axes_tubes->SetInput (axes_data); axes_tubes->SetRadius (axes->GetScaleFactor () / 50.0); axes_tubes->SetNumberOfSides (6); vtkSmartPointer mapper = vtkSmartPointer::New (); mapper->SetScalarModeToUsePointData (); mapper->SetInput(axes_tubes->GetOutput ()); vtkSmartPointer actor = vtkSmartPointer::New(); actor->SetMapper(mapper); WidgetAccessor::setProp(*this, actor); } template<> cv::viz::CoordinateSystemWidget cv::viz::Widget::cast() { Widget3D widget = this->cast(); return static_cast(widget); } /////////////////////////////////////////////////////////////////////////////////////////////// /// polyline widget implementation struct cv::viz::PolyLineWidget::CopyImpl { template static void copy(const Mat& source, Vec<_Tp, 3> *output, vtkSmartPointer polyLine) { int s_chs = source.channels(); for(int y = 0, id = 0; y < source.rows; ++y) { const _Tp* srow = source.ptr<_Tp>(y); for(int x = 0; x < source.cols; ++x, srow += s_chs, ++id) { *output++ = Vec<_Tp, 3>(srow); polyLine->GetPointIds()->SetId(id,id); } } } }; cv::viz::PolyLineWidget::PolyLineWidget(InputArray _pointData, const Color &color) { Mat pointData = _pointData.getMat(); CV_Assert(pointData.type() == CV_32FC3 || pointData.type() == CV_32FC4 || pointData.type() == CV_64FC3 || pointData.type() == CV_64FC4); vtkIdType nr_points = pointData.total(); vtkSmartPointer points = vtkSmartPointer::New (); vtkSmartPointer polyData = vtkSmartPointer::New (); vtkSmartPointer polyLine = vtkSmartPointer::New (); if (pointData.depth() == CV_32F) points->SetDataTypeToFloat(); else points->SetDataTypeToDouble(); points->SetNumberOfPoints(nr_points); polyLine->GetPointIds()->SetNumberOfIds(nr_points); if (pointData.depth() == CV_32F) { // Get a pointer to the beginning of the data array Vec3f *data_beg = vtkpoints_data(points); CopyImpl::copy(pointData, data_beg, polyLine); } else if (pointData.depth() == CV_64F) { // Get a pointer to the beginning of the data array Vec3d *data_beg = vtkpoints_data(points); CopyImpl::copy(pointData, data_beg, polyLine); } vtkSmartPointer cells = vtkSmartPointer::New(); cells->InsertNextCell(polyLine); polyData->SetPoints(points); polyData->SetLines(cells); vtkSmartPointer mapper = vtkSmartPointer::New(); mapper->SetInput(polyData); vtkSmartPointer actor = vtkSmartPointer::New(); actor->SetMapper(mapper); WidgetAccessor::setProp(*this, actor); setColor(color); } template<> cv::viz::PolyLineWidget cv::viz::Widget::cast() { Widget3D widget = this->cast(); return static_cast(widget); } /////////////////////////////////////////////////////////////////////////////////////////////// /// grid widget implementation cv::viz::GridWidget::GridWidget(Vec2i dimensions, Vec2d spacing, const Color &color) { // Create the grid using image data vtkSmartPointer grid = vtkSmartPointer::New(); // Add 1 to dimensions because in ImageData dimensions is the number of lines // - however here it means number of cells grid->SetDimensions(dimensions[0]+1, dimensions[1]+1, 1); grid->SetSpacing(spacing[0], spacing[1], 0.); // Set origin of the grid to be the middle of the grid grid->SetOrigin(dimensions[0] * spacing[0] * (-0.5), dimensions[1] * spacing[1] * (-0.5), 0); // Extract the edges so we have the grid vtkSmartPointer filter = vtkSmartPointer::New(); filter->SetInputConnection(grid->GetProducerPort()); filter->Update(); vtkSmartPointer mapper = vtkSmartPointer::New(); mapper->SetInput(filter->GetOutput()); vtkSmartPointer actor = vtkSmartPointer::New(); actor->SetMapper(mapper); WidgetAccessor::setProp(*this, actor); setColor(color); } template<> cv::viz::GridWidget cv::viz::Widget::cast() { Widget3D widget = this->cast(); return static_cast(widget); } /////////////////////////////////////////////////////////////////////////////////////////////// /// text3D widget implementation cv::viz::Text3DWidget::Text3DWidget(const String &text, const Point3f &position, double text_scale, const Color &color) { vtkSmartPointer textSource = vtkSmartPointer::New (); textSource->SetText (text.c_str()); textSource->Update (); vtkSmartPointer mapper = vtkSmartPointer::New (); mapper->SetInputConnection (textSource->GetOutputPort ()); vtkSmartPointer actor = vtkSmartPointer::New (); actor->SetMapper (mapper); actor->SetPosition (position.x, position.y, position.z); actor->SetScale (text_scale); WidgetAccessor::setProp(*this, actor); setColor(color); } void cv::viz::Text3DWidget::setText(const String &text) { vtkFollower *actor = vtkFollower::SafeDownCast(WidgetAccessor::getProp(*this)); CV_Assert(actor); // Update text source vtkPolyDataMapper *mapper = vtkPolyDataMapper::SafeDownCast(actor->GetMapper()); vtkVectorText * textSource = vtkVectorText::SafeDownCast(mapper->GetInputConnection(0,0)->GetProducer()); CV_Assert(textSource); textSource->SetText(text.c_str()); textSource->Update(); } cv::String cv::viz::Text3DWidget::getText() const { vtkFollower *actor = vtkFollower::SafeDownCast(WidgetAccessor::getProp(*this)); CV_Assert(actor); vtkPolyDataMapper *mapper = vtkPolyDataMapper::SafeDownCast(actor->GetMapper()); vtkVectorText * textSource = vtkVectorText::SafeDownCast(mapper->GetInputConnection(0,0)->GetProducer()); CV_Assert(textSource); return textSource->GetText(); } template<> cv::viz::Text3DWidget cv::viz::Widget::cast() { Widget3D widget = this->cast(); return static_cast(widget); } /////////////////////////////////////////////////////////////////////////////////////////////// /// text widget implementation cv::viz::TextWidget::TextWidget(const String &text, const Point2i &pos, int font_size, const Color &color) { vtkSmartPointer actor = vtkSmartPointer::New(); actor->SetPosition (pos.x, pos.y); actor->SetInput (text.c_str ()); vtkSmartPointer tprop = actor->GetTextProperty (); tprop->SetFontSize (font_size); tprop->SetFontFamilyToArial (); tprop->SetJustificationToLeft (); tprop->BoldOn (); Color c = vtkcolor(color); tprop->SetColor (c.val); WidgetAccessor::setProp(*this, actor); } template<> cv::viz::TextWidget cv::viz::Widget::cast() { Widget2D widget = this->cast(); return static_cast(widget); } void cv::viz::TextWidget::setText(const String &text) { vtkTextActor *actor = vtkTextActor::SafeDownCast(WidgetAccessor::getProp(*this)); CV_Assert(actor); actor->SetInput(text.c_str()); } cv::String cv::viz::TextWidget::getText() const { vtkTextActor *actor = vtkTextActor::SafeDownCast(WidgetAccessor::getProp(*this)); CV_Assert(actor); return actor->GetInput(); } /////////////////////////////////////////////////////////////////////////////////////////////// /// image overlay widget implementation struct cv::viz::ImageOverlayWidget::CopyImpl { struct Impl { static void copyImageMultiChannel(const Mat &image, vtkSmartPointer output) { int i_chs = image.channels(); for (int i = 0; i < image.rows; ++i) { const unsigned char * irows = image.ptr(i); for (int j = 0; j < image.cols; ++j, irows += i_chs) { unsigned char * vrows = static_cast(output->GetScalarPointer(j,i,0)); memcpy(vrows, irows, i_chs); std::swap(vrows[0], vrows[2]); // BGR -> RGB } } output->Modified(); } static void copyImageSingleChannel(const Mat &image, vtkSmartPointer output) { for (int i = 0; i < image.rows; ++i) { const unsigned char * irows = image.ptr(i); for (int j = 0; j < image.cols; ++j, ++irows) { unsigned char * vrows = static_cast(output->GetScalarPointer(j,i,0)); *vrows = *irows; } } output->Modified(); } }; static void copyImage(const Mat &image, vtkSmartPointer output) { int i_chs = image.channels(); if (i_chs > 1) { // Multi channel images are handled differently because of BGR <-> RGB Impl::copyImageMultiChannel(image, output); } else { Impl::copyImageSingleChannel(image, output); } } }; cv::viz::ImageOverlayWidget::ImageOverlayWidget(const Mat &image, const Point2i &pos) { CV_Assert(!image.empty() && image.depth() == CV_8U); // Create the vtk image and set its parameters based on input image vtkSmartPointer vtk_image = vtkSmartPointer::New(); vtk_image->SetDimensions(image.cols, image.rows, 1); vtk_image->SetNumberOfScalarComponents(image.channels()); vtk_image->SetScalarTypeToUnsignedChar(); vtk_image->AllocateScalars(); CopyImpl::copyImage(image, vtk_image); // Need to flip the image as the coordinates are different in OpenCV and VTK vtkSmartPointer flipFilter = vtkSmartPointer::New(); flipFilter->SetFilteredAxis(1); // Vertical flip flipFilter->SetInputConnection(vtk_image->GetProducerPort()); flipFilter->Update(); vtkSmartPointer imageMapper = vtkSmartPointer::New(); imageMapper->SetInputConnection(flipFilter->GetOutputPort()); imageMapper->SetColorWindow(255); // OpenCV color imageMapper->SetColorLevel(127.5); vtkSmartPointer actor = vtkSmartPointer::New(); actor->SetMapper(imageMapper); actor->SetPosition(pos.x, pos.y); WidgetAccessor::setProp(*this, actor); } void cv::viz::ImageOverlayWidget::setImage(const Mat &image) { CV_Assert(!image.empty() && image.depth() == CV_8U); vtkActor2D *actor = vtkActor2D::SafeDownCast(WidgetAccessor::getProp(*this)); CV_Assert(actor); vtkImageMapper *mapper = vtkImageMapper::SafeDownCast(actor->GetMapper()); CV_Assert(mapper); // Create the vtk image and set its parameters based on input image vtkSmartPointer vtk_image = vtkSmartPointer::New(); vtk_image->SetDimensions(image.cols, image.rows, 1); vtk_image->SetNumberOfScalarComponents(image.channels()); vtk_image->SetScalarTypeToUnsignedChar(); vtk_image->AllocateScalars(); CopyImpl::copyImage(image, vtk_image); // Need to flip the image as the coordinates are different in OpenCV and VTK vtkSmartPointer flipFilter = vtkSmartPointer::New(); flipFilter->SetFilteredAxis(1); // Vertical flip flipFilter->SetInputConnection(vtk_image->GetProducerPort()); flipFilter->Update(); mapper->SetInputConnection(flipFilter->GetOutputPort()); } template<> cv::viz::ImageOverlayWidget cv::viz::Widget::cast() { Widget2D widget = this->cast(); return static_cast(widget); } /////////////////////////////////////////////////////////////////////////////////////////////// /// image 3D widget implementation struct cv::viz::Image3DWidget::CopyImpl { struct Impl { static void copyImageMultiChannel(const Mat &image, vtkSmartPointer output) { int i_chs = image.channels(); for (int i = 0; i < image.rows; ++i) { const unsigned char * irows = image.ptr(i); for (int j = 0; j < image.cols; ++j, irows += i_chs) { unsigned char * vrows = static_cast(output->GetScalarPointer(j,i,0)); memcpy(vrows, irows, i_chs); std::swap(vrows[0], vrows[2]); // BGR -> RGB } } output->Modified(); } static void copyImageSingleChannel(const Mat &image, vtkSmartPointer output) { for (int i = 0; i < image.rows; ++i) { const unsigned char * irows = image.ptr(i); for (int j = 0; j < image.cols; ++j, ++irows) { unsigned char * vrows = static_cast(output->GetScalarPointer(j,i,0)); *vrows = *irows; } } output->Modified(); } }; static void copyImage(const Mat &image, vtkSmartPointer output) { int i_chs = image.channels(); if (i_chs > 1) { // Multi channel images are handled differently because of BGR <-> RGB Impl::copyImageMultiChannel(image, output); } else { Impl::copyImageSingleChannel(image, output); } } }; cv::viz::Image3DWidget::Image3DWidget(const Mat &image) { CV_Assert(!image.empty() && image.depth() == CV_8U); // Create the vtk image and set its parameters based on input image vtkSmartPointer vtk_image = vtkSmartPointer::New(); vtk_image->SetDimensions(image.cols, image.rows, 1); vtk_image->SetNumberOfScalarComponents(image.channels()); vtk_image->SetScalarTypeToUnsignedChar(); vtk_image->AllocateScalars(); CopyImpl::copyImage(image, vtk_image); // Need to flip the image as the coordinates are different in OpenCV and VTK vtkSmartPointer flipFilter = vtkSmartPointer::New(); flipFilter->SetFilteredAxis(1); // Vertical flip flipFilter->SetInputConnection(vtk_image->GetProducerPort()); flipFilter->Update(); vtkSmartPointer actor = vtkSmartPointer::New(); actor->SetInput(flipFilter->GetOutput()); WidgetAccessor::setProp(*this, actor); } void cv::viz::Image3DWidget::setImage(const Mat &image) { CV_Assert(!image.empty() && image.depth() == CV_8U); vtkImageActor *actor = vtkImageActor::SafeDownCast(WidgetAccessor::getProp(*this)); CV_Assert(actor); // Create the vtk image and set its parameters based on input image vtkSmartPointer vtk_image = vtkSmartPointer::New(); vtk_image->SetDimensions(image.cols, image.rows, 1); vtk_image->SetNumberOfScalarComponents(image.channels()); vtk_image->SetScalarTypeToUnsignedChar(); vtk_image->AllocateScalars(); CopyImpl::copyImage(image, vtk_image); // Need to flip the image as the coordinates are different in OpenCV and VTK vtkSmartPointer flipFilter = vtkSmartPointer::New(); flipFilter->SetFilteredAxis(1); // Vertical flip flipFilter->SetInputConnection(vtk_image->GetProducerPort()); flipFilter->Update(); actor->SetInput(flipFilter->GetOutput()); } template<> cv::viz::Image3DWidget cv::viz::Widget::cast() { Widget3D widget = this->cast(); return static_cast(widget); } /////////////////////////////////////////////////////////////////////////////////////////////// /// camera position widget implementation cv::viz::CameraPositionWidget::CameraPositionWidget(double scale) { vtkSmartPointer axes = vtkSmartPointer::New (); axes->SetOrigin (0, 0, 0); axes->SetScaleFactor (scale); vtkSmartPointer axes_colors = vtkSmartPointer::New (); axes_colors->Allocate (6); axes_colors->InsertNextValue (0.0); axes_colors->InsertNextValue (0.0); axes_colors->InsertNextValue (0.5); axes_colors->InsertNextValue (0.5); axes_colors->InsertNextValue (1.0); axes_colors->InsertNextValue (1.0); vtkSmartPointer axes_data = axes->GetOutput (); axes_data->Update (); axes_data->GetPointData ()->SetScalars (axes_colors); vtkSmartPointer axes_tubes = vtkSmartPointer::New (); axes_tubes->SetInput (axes_data); axes_tubes->SetRadius (axes->GetScaleFactor () / 50.0); axes_tubes->SetNumberOfSides (6); vtkSmartPointer mapper = vtkSmartPointer::New (); mapper->SetScalarModeToUsePointData (); mapper->SetInput(axes_tubes->GetOutput ()); vtkSmartPointer actor = vtkSmartPointer::New(); actor->SetMapper(mapper); WidgetAccessor::setProp(*this, actor); } cv::viz::CameraPositionWidget::CameraPositionWidget(const Vec3f &position, const Vec3f &look_at, const Vec3f &up_vector, double scale) { vtkSmartPointer axes = vtkSmartPointer::New (); axes->SetOrigin (0, 0, 0); axes->SetScaleFactor (scale); // Compute the transformation matrix for drawing the camera frame in a scene Vec3f u,v,n; n = normalize(look_at - position); u = normalize(up_vector.cross(n)); v = n.cross(u); vtkSmartPointer mat_trans = vtkSmartPointer::New(); mat_trans->SetElement(0,0,u[0]); mat_trans->SetElement(0,1,u[1]); mat_trans->SetElement(0,2,u[2]); mat_trans->SetElement(1,0,v[0]); mat_trans->SetElement(1,1,v[1]); mat_trans->SetElement(1,2,v[2]); mat_trans->SetElement(2,0,n[0]); mat_trans->SetElement(2,1,n[1]); mat_trans->SetElement(2,2,n[2]); // Inverse rotation (orthogonal, so just take transpose) mat_trans->Transpose(); // Then translate the coordinate frame to camera position mat_trans->SetElement(0,3,position[0]); mat_trans->SetElement(1,3,position[1]); mat_trans->SetElement(2,3,position[2]); mat_trans->SetElement(3,3,1); vtkSmartPointer axes_colors = vtkSmartPointer::New (); axes_colors->Allocate (6); axes_colors->InsertNextValue (0.0); axes_colors->InsertNextValue (0.0); axes_colors->InsertNextValue (0.5); axes_colors->InsertNextValue (0.5); axes_colors->InsertNextValue (1.0); axes_colors->InsertNextValue (1.0); vtkSmartPointer axes_data = axes->GetOutput (); axes_data->Update (); axes_data->GetPointData ()->SetScalars (axes_colors); // Transform the default coordinate frame vtkSmartPointer transform = vtkSmartPointer::New(); transform->PreMultiply(); transform->SetMatrix(mat_trans); vtkSmartPointer filter = vtkSmartPointer::New(); filter->SetInput(axes_data); filter->SetTransform(transform); filter->Update(); vtkSmartPointer axes_tubes = vtkSmartPointer::New (); axes_tubes->SetInput (filter->GetOutput()); axes_tubes->SetRadius (axes->GetScaleFactor () / 50.0); axes_tubes->SetNumberOfSides (6); vtkSmartPointer mapper = vtkSmartPointer::New (); mapper->SetScalarModeToUsePointData (); mapper->SetInput(axes_tubes->GetOutput ()); vtkSmartPointer actor = vtkSmartPointer::New(); actor->SetMapper(mapper); WidgetAccessor::setProp(*this, actor); } cv::viz::CameraPositionWidget::CameraPositionWidget(const Matx33f &K, double scale, const Color &color) { vtkSmartPointer camera = vtkSmartPointer::New(); float f_x = K(0,0); float f_y = K(1,1); float c_y = K(1,2); float aspect_ratio = f_y / f_x; // Assuming that this is an ideal camera (c_y and c_x are at the center of the image) float fovy = 2.0f * atan2(c_y,f_y) * 180 / CV_PI; camera->SetViewAngle(fovy); camera->SetPosition(0.0,0.0,0.0); camera->SetViewUp(0.0,1.0,0.0); camera->SetFocalPoint(0.0,0.0,1.0); camera->SetClippingRange(0.01, scale); double planesArray[24]; camera->GetFrustumPlanes(aspect_ratio, planesArray); vtkSmartPointer planes = vtkSmartPointer::New(); planes->SetFrustumPlanes(planesArray); vtkSmartPointer frustumSource = vtkSmartPointer::New(); frustumSource->SetPlanes(planes); frustumSource->Update(); vtkSmartPointer filter = vtkSmartPointer::New(); filter->SetInput(frustumSource->GetOutput()); filter->Update(); vtkSmartPointer mapper = vtkSmartPointer::New(); mapper->SetInput(filter->GetOutput()); vtkSmartPointer actor = vtkSmartPointer::New(); actor->SetMapper(mapper); WidgetAccessor::setProp(*this, actor); setColor(color); } cv::viz::CameraPositionWidget::CameraPositionWidget(const Vec2f &fov, double scale, const Color &color) { vtkSmartPointer camera = vtkSmartPointer::New(); camera->SetViewAngle(fov[1] * 180 / CV_PI); // Vertical field of view camera->SetPosition(0.0,0.0,0.0); camera->SetViewUp(0.0,1.0,0.0); camera->SetFocalPoint(0.0,0.0,1.0); camera->SetClippingRange(0.01, scale); double planesArray[24]; // Default aspect ratio = 1.0? fovx/fovy? camera->GetFrustumPlanes(1.0, planesArray); vtkSmartPointer planes = vtkSmartPointer::New(); planes->SetFrustumPlanes(planesArray); vtkSmartPointer frustumSource = vtkSmartPointer::New(); frustumSource->SetPlanes(planes); frustumSource->Update(); // Extract the edges so we have the grid vtkSmartPointer filter = vtkSmartPointer::New(); filter->SetInput(frustumSource->GetOutput()); filter->Update(); vtkSmartPointer mapper = vtkSmartPointer::New(); mapper->SetInput(filter->GetOutput()); vtkSmartPointer actor = vtkSmartPointer::New(); actor->SetMapper(mapper); WidgetAccessor::setProp(*this, actor); setColor(color); } /////////////////////////////////////////////////////////////////////////////////////////////// /// trajectory widget implementation cv::viz::TrajectoryWidget::TrajectoryWidget(const std::vector &path, const Color &color, bool show_frames, double scale) { vtkIdType nr_points = path.size(); vtkSmartPointer points = vtkSmartPointer::New (); vtkSmartPointer polyData = vtkSmartPointer::New (); vtkSmartPointer polyLine = vtkSmartPointer::New (); points->SetDataTypeToFloat(); points->SetNumberOfPoints(nr_points); polyLine->GetPointIds()->SetNumberOfIds(nr_points); Vec3f last_pos(0.0f,0.0f,0.0f); Vec3f *data_beg = vtkpoints_data(points); *data_beg = path[0] * last_pos; for (vtkIdType i = 0; i < nr_points; ++i) { last_pos = path[i] * last_pos; *data_beg++ = last_pos; polyLine->GetPointIds()->SetId(i,i); } vtkSmartPointer cells = vtkSmartPointer::New(); cells->InsertNextCell(polyLine); polyData->SetPoints(points); polyData->SetLines(cells); vtkSmartPointer appendFilter = vtkSmartPointer::New(); if (show_frames) { vtkSmartPointer mat_trans = vtkSmartPointer::New(); mat_trans->Identity(); for (vtkIdType i = 0; i < nr_points; ++i) { vtkSmartPointer axes = vtkSmartPointer::New(); axes->SetOrigin (0, 0, 0); axes->SetScaleFactor (scale); vtkSmartPointer axes_colors = vtkSmartPointer::New (); axes_colors->SetNumberOfComponents(3); axes_colors->InsertNextTuple3(255,0,0); axes_colors->InsertNextTuple3(255,0,0); axes_colors->InsertNextTuple3(0,255,0); axes_colors->InsertNextTuple3(0,255,0); axes_colors->InsertNextTuple3(0,0,255); axes_colors->InsertNextTuple3(0,0,255); vtkSmartPointer axes_data = axes->GetOutput (); axes_data->Update (); axes_data->GetPointData ()->SetScalars (axes_colors); // Transform the default coordinate frame vtkSmartPointer transform = vtkSmartPointer::New(); transform->PreMultiply(); vtkMatrix4x4::Multiply4x4(convertToVtkMatrix(path[i].matrix), mat_trans, mat_trans); transform->SetMatrix(mat_trans); vtkSmartPointer filter = vtkSmartPointer::New(); filter->SetInput(axes_data); filter->SetTransform(transform); filter->Update(); vtkSmartPointer axes_tubes = vtkSmartPointer::New (); axes_tubes->SetInput (filter->GetOutput()); axes_tubes->SetRadius (axes->GetScaleFactor () / 50.0); axes_tubes->SetNumberOfSides (6); appendFilter->AddInputConnection(axes_tubes->GetOutputPort()); } } // Set the color only for polyData vtkSmartPointer colors = vtkSmartPointer::New(); colors->SetNumberOfComponents(3); // TODO Make this more efficient for (int i = 0; i < nr_points; ++i) colors->InsertNextTuple3(color[2], color[1], color[0]); polyData->GetPointData()->SetScalars(colors); appendFilter->AddInputConnection(polyData->GetProducerPort()); vtkSmartPointer mapper = vtkSmartPointer::New(); mapper->SetScalarModeToUsePointData (); mapper->SetInput(appendFilter->GetOutput()); vtkSmartPointer actor = vtkSmartPointer::New(); actor->SetMapper(mapper); WidgetAccessor::setProp(*this, actor); } cv::viz::TrajectoryWidget::TrajectoryWidget(const std::vector &path, const Matx33f &K, double scale, const Color &color) { vtkIdType nr_points = path.size(); vtkSmartPointer appendFilter = vtkSmartPointer::New(); vtkSmartPointer camera = vtkSmartPointer::New(); float f_x = K(0,0); float f_y = K(1,1); float c_y = K(1,2); float aspect_ratio = f_y / f_x; // Assuming that this is an ideal camera (c_y and c_x are at the center of the image) float fovy = 2.0f * atan2(c_y,f_y) * 180 / CV_PI; camera->SetViewAngle(fovy); camera->SetPosition(0.0,0.0,0.0); camera->SetViewUp(0.0,1.0,0.0); camera->SetFocalPoint(0.0,0.0,1.0); camera->SetClippingRange(0.01, scale); double planesArray[24]; camera->GetFrustumPlanes(aspect_ratio, planesArray); vtkSmartPointer mat_trans = vtkSmartPointer::New(); mat_trans->Identity(); for (vtkIdType i = 0; i < nr_points; ++i) { vtkSmartPointer planes = vtkSmartPointer::New(); planes->SetFrustumPlanes(planesArray); vtkSmartPointer frustumSource = vtkSmartPointer::New(); frustumSource->SetPlanes(planes); frustumSource->Update(); // Extract the edges vtkSmartPointer filter = vtkSmartPointer::New(); filter->SetInput(frustumSource->GetOutput()); filter->Update(); // Transform the default coordinate frame vtkSmartPointer transform = vtkSmartPointer::New(); transform->PreMultiply(); vtkMatrix4x4::Multiply4x4(convertToVtkMatrix(path[i].matrix), mat_trans, mat_trans); transform->SetMatrix(mat_trans); vtkSmartPointer transform_filter = vtkSmartPointer::New(); transform_filter->SetInput(filter->GetOutput()); transform_filter->SetTransform(transform); transform_filter->Update(); appendFilter->AddInputConnection(transform_filter->GetOutputPort()); } vtkSmartPointer mapper = vtkSmartPointer::New(); mapper->SetInput(appendFilter->GetOutput()); vtkSmartPointer actor = vtkSmartPointer::New(); actor->SetMapper(mapper); WidgetAccessor::setProp(*this, actor); setColor(color); }