/* ssymv.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "clapack.h" /* Subroutine */ int ssymv_(char *uplo, integer *n, real *alpha, real *a, integer *lda, real *x, integer *incx, real *beta, real *y, integer * incy) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2; /* Local variables */ integer i__, j, ix, iy, jx, jy, kx, ky, info; real temp1, temp2; extern logical lsame_(char *, char *); extern /* Subroutine */ int xerbla_(char *, integer *); /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SSYMV performs the matrix-vector operation */ /* y := alpha*A*x + beta*y, */ /* where alpha and beta are scalars, x and y are n element vectors and */ /* A is an n by n symmetric matrix. */ /* Arguments */ /* ========== */ /* UPLO - CHARACTER*1. */ /* On entry, UPLO specifies whether the upper or lower */ /* triangular part of the array A is to be referenced as */ /* follows: */ /* UPLO = 'U' or 'u' Only the upper triangular part of A */ /* is to be referenced. */ /* UPLO = 'L' or 'l' Only the lower triangular part of A */ /* is to be referenced. */ /* Unchanged on exit. */ /* N - INTEGER. */ /* On entry, N specifies the order of the matrix A. */ /* N must be at least zero. */ /* Unchanged on exit. */ /* ALPHA - REAL . */ /* On entry, ALPHA specifies the scalar alpha. */ /* Unchanged on exit. */ /* A - REAL array of DIMENSION ( LDA, n ). */ /* Before entry with UPLO = 'U' or 'u', the leading n by n */ /* upper triangular part of the array A must contain the upper */ /* triangular part of the symmetric matrix and the strictly */ /* lower triangular part of A is not referenced. */ /* Before entry with UPLO = 'L' or 'l', the leading n by n */ /* lower triangular part of the array A must contain the lower */ /* triangular part of the symmetric matrix and the strictly */ /* upper triangular part of A is not referenced. */ /* Unchanged on exit. */ /* LDA - INTEGER. */ /* On entry, LDA specifies the first dimension of A as declared */ /* in the calling (sub) program. LDA must be at least */ /* max( 1, n ). */ /* Unchanged on exit. */ /* X - REAL array of dimension at least */ /* ( 1 + ( n - 1 )*abs( INCX ) ). */ /* Before entry, the incremented array X must contain the n */ /* element vector x. */ /* Unchanged on exit. */ /* INCX - INTEGER. */ /* On entry, INCX specifies the increment for the elements of */ /* X. INCX must not be zero. */ /* Unchanged on exit. */ /* BETA - REAL . */ /* On entry, BETA specifies the scalar beta. When BETA is */ /* supplied as zero then Y need not be set on input. */ /* Unchanged on exit. */ /* Y - REAL array of dimension at least */ /* ( 1 + ( n - 1 )*abs( INCY ) ). */ /* Before entry, the incremented array Y must contain the n */ /* element vector y. On exit, Y is overwritten by the updated */ /* vector y. */ /* INCY - INTEGER. */ /* On entry, INCY specifies the increment for the elements of */ /* Y. INCY must not be zero. */ /* Unchanged on exit. */ /* Level 2 Blas routine. */ /* -- Written on 22-October-1986. */ /* Jack Dongarra, Argonne National Lab. */ /* Jeremy Du Croz, Nag Central Office. */ /* Sven Hammarling, Nag Central Office. */ /* Richard Hanson, Sandia National Labs. */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --x; --y; /* Function Body */ info = 0; if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) { info = 1; } else if (*n < 0) { info = 2; } else if (*lda < max(1,*n)) { info = 5; } else if (*incx == 0) { info = 7; } else if (*incy == 0) { info = 10; } if (info != 0) { xerbla_("SSYMV ", &info); return 0; } /* Quick return if possible. */ if (*n == 0 || *alpha == 0.f && *beta == 1.f) { return 0; } /* Set up the start points in X and Y. */ if (*incx > 0) { kx = 1; } else { kx = 1 - (*n - 1) * *incx; } if (*incy > 0) { ky = 1; } else { ky = 1 - (*n - 1) * *incy; } /* Start the operations. In this version the elements of A are */ /* accessed sequentially with one pass through the triangular part */ /* of A. */ /* First form y := beta*y. */ if (*beta != 1.f) { if (*incy == 1) { if (*beta == 0.f) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { y[i__] = 0.f; /* L10: */ } } else { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { y[i__] = *beta * y[i__]; /* L20: */ } } } else { iy = ky; if (*beta == 0.f) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { y[iy] = 0.f; iy += *incy; /* L30: */ } } else { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { y[iy] = *beta * y[iy]; iy += *incy; /* L40: */ } } } } if (*alpha == 0.f) { return 0; } if (lsame_(uplo, "U")) { /* Form y when A is stored in upper triangle. */ if (*incx == 1 && *incy == 1) { i__1 = *n; for (j = 1; j <= i__1; ++j) { temp1 = *alpha * x[j]; temp2 = 0.f; i__2 = j - 1; for (i__ = 1; i__ <= i__2; ++i__) { y[i__] += temp1 * a[i__ + j * a_dim1]; temp2 += a[i__ + j * a_dim1] * x[i__]; /* L50: */ } y[j] = y[j] + temp1 * a[j + j * a_dim1] + *alpha * temp2; /* L60: */ } } else { jx = kx; jy = ky; i__1 = *n; for (j = 1; j <= i__1; ++j) { temp1 = *alpha * x[jx]; temp2 = 0.f; ix = kx; iy = ky; i__2 = j - 1; for (i__ = 1; i__ <= i__2; ++i__) { y[iy] += temp1 * a[i__ + j * a_dim1]; temp2 += a[i__ + j * a_dim1] * x[ix]; ix += *incx; iy += *incy; /* L70: */ } y[jy] = y[jy] + temp1 * a[j + j * a_dim1] + *alpha * temp2; jx += *incx; jy += *incy; /* L80: */ } } } else { /* Form y when A is stored in lower triangle. */ if (*incx == 1 && *incy == 1) { i__1 = *n; for (j = 1; j <= i__1; ++j) { temp1 = *alpha * x[j]; temp2 = 0.f; y[j] += temp1 * a[j + j * a_dim1]; i__2 = *n; for (i__ = j + 1; i__ <= i__2; ++i__) { y[i__] += temp1 * a[i__ + j * a_dim1]; temp2 += a[i__ + j * a_dim1] * x[i__]; /* L90: */ } y[j] += *alpha * temp2; /* L100: */ } } else { jx = kx; jy = ky; i__1 = *n; for (j = 1; j <= i__1; ++j) { temp1 = *alpha * x[jx]; temp2 = 0.f; y[jy] += temp1 * a[j + j * a_dim1]; ix = jx; iy = jy; i__2 = *n; for (i__ = j + 1; i__ <= i__2; ++i__) { ix += *incx; iy += *incy; y[iy] += temp1 * a[i__ + j * a_dim1]; temp2 += a[i__ + j * a_dim1] * x[ix]; /* L110: */ } y[jy] += *alpha * temp2; jx += *incx; jy += *incy; /* L120: */ } } } return 0; /* End of SSYMV . */ } /* ssymv_ */